These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
416 related articles for article (PubMed ID: 28790851)
1. Identification of the anticancer effects of a novel proteasome inhibitor, ixazomib, on colorectal cancer using a combined method of microarray and bioinformatics analysis. Fan Q; Liu B Onco Targets Ther; 2017; 10():3591-3606. PubMed ID: 28790851 [TBL] [Abstract][Full Text] [Related]
2. Identification of key genes and associated pathways in KIT/PDGFRA wild‑type gastrointestinal stromal tumors through bioinformatics analysis. Wang WJ; Li HT; Yu JP; Li YM; Han XP; Chen P; Yu WW; Chen WK; Jiao ZY; Liu HB Mol Med Rep; 2018 Nov; 18(5):4499-4515. PubMed ID: 30221743 [TBL] [Abstract][Full Text] [Related]
3. Microarray based analysis of gene regulation by mesenchymal stem cells in breast cancer. Zhang M; Gao CE; Li WH; Yang Y; Chang L; Dong J; Ren YX; Chen D Oncol Lett; 2017 Apr; 13(4):2770-2776. PubMed ID: 28454465 [TBL] [Abstract][Full Text] [Related]
4. Identification of genes and pathways in esophageal adenocarcinoma using bioinformatics analysis. He F; Ai B; Tian L Biomed Rep; 2018 Oct; 9(4):305-312. PubMed ID: 30233782 [TBL] [Abstract][Full Text] [Related]
5. Identification of differentially expressed genes and signaling pathways in papillary thyroid cancer: a study based on integrated microarray and bioinformatics analysis. Sun T; Guan Q; Wang Y; Qian K; Sun W; Ji Q; Wu Y; Guo K; Xiang J Gland Surg; 2021 Feb; 10(2):629-644. PubMed ID: 33708546 [TBL] [Abstract][Full Text] [Related]
6. Identification of Metastasis-Associated Biomarkers in Synovial Sarcoma Using Bioinformatics Analysis. Song Y; Liu X; Wang F; Wang X; Cheng G; Peng C Front Genet; 2020; 11():530892. PubMed ID: 33061942 [TBL] [Abstract][Full Text] [Related]
7. CDK1 and CDC20 overexpression in patients with colorectal cancer are associated with poor prognosis: evidence from integrated bioinformatics analysis. Li J; Wang Y; Wang X; Yang Q World J Surg Oncol; 2020 Mar; 18(1):50. PubMed ID: 32127012 [TBL] [Abstract][Full Text] [Related]
8. Identification of candidate biomarkers and pathways associated with SCLC by bioinformatics analysis. Wen P; Chidanguro T; Shi Z; Gu H; Wang N; Wang T; Li Y; Gao J Mol Med Rep; 2018 Aug; 18(2):1538-1550. PubMed ID: 29845250 [TBL] [Abstract][Full Text] [Related]
9. Bioinformatics analysis of gene expression profile data to screen key genes involved in intracranial aneurysms. Guo T; Hou D; Yu D Mol Med Rep; 2019 Nov; 20(5):4415-4424. PubMed ID: 31545495 [TBL] [Abstract][Full Text] [Related]
10. Identification of Key Genes in Colorectal Cancer Regulated by miR-34a. Wang T; Xu H; Liu X; Chen S; Zhou Y; Zhang X Med Sci Monit; 2017 Dec; 23():5735-5743. PubMed ID: 29197895 [TBL] [Abstract][Full Text] [Related]
11. Complement C5 is a novel biomarker for liver metastasis of colorectal cancer. Chang H; Jin L; Xie P; Zhang B; Yu M; Li H; Liu S; Yan J; Zhou B; Li X; Xu Y; Xiao Y; Ye Q; Guo L J Gastrointest Oncol; 2022 Oct; 13(5):2351-2365. PubMed ID: 36388659 [TBL] [Abstract][Full Text] [Related]
12. Identification and Interaction Analysis of Molecular Markers in Colorectal Cancer by Integrated Bioinformatics Analysis. Han B; Feng D; Yu X; Zhang Y; Liu Y; Zhou L Med Sci Monit; 2018 Aug; 24():6059-6069. PubMed ID: 30168505 [TBL] [Abstract][Full Text] [Related]
13. Identification of key genes and pathways in pelvic organ prolapse based on gene expression profiling by bioinformatics analysis. Zhou Q; Hong L; Wang J Arch Gynecol Obstet; 2018 May; 297(5):1323-1332. PubMed ID: 29546564 [TBL] [Abstract][Full Text] [Related]
14. Delineating the underlying molecular mechanisms and key genes involved in metastasis of colorectal cancer via bioinformatics analysis. Qi C; Chen Y; Zhou Y; Huang X; Li G; Zeng J; Ruan Z; Xie X; Zhang J Oncol Rep; 2018 May; 39(5):2297-2305. PubMed ID: 29517105 [TBL] [Abstract][Full Text] [Related]
15. Identification of molecular marker associated with ovarian cancer prognosis using bioinformatics analysis and experiments. Zheng MJ; Li X; Hu YX; Dong H; Gou R; Nie X; Liu Q; Ying-Ying H; Liu JJ; Lin B J Cell Physiol; 2019 Jul; 234(7):11023-11036. PubMed ID: 30633343 [TBL] [Abstract][Full Text] [Related]
16. Bioinformatics analysis of fibroblasts exposed to TGF‑β at the early proliferation phase of wound repair. Mi B; Liu G; Zhou W; Lv H; Zha K; Liu Y; Wu Q; Liu J Mol Med Rep; 2017 Dec; 16(6):8146-8154. PubMed ID: 28983581 [TBL] [Abstract][Full Text] [Related]
17. Identifying the key genes and microRNAs in colorectal cancer liver metastasis by bioinformatics analysis and in vitro experiments. Zhang T; Guo J; Gu J; Wang Z; Wang G; Li H; Wang J Oncol Rep; 2019 Jan; 41(1):279-291. PubMed ID: 30542696 [TBL] [Abstract][Full Text] [Related]
18. Identification of key pathways and genes in colorectal cancer using bioinformatics analysis. Liang B; Li C; Zhao J Med Oncol; 2016 Oct; 33(10):111. PubMed ID: 27581154 [TBL] [Abstract][Full Text] [Related]
19. Identification of genes and signaling pathways associated with squamous cell carcinoma by bioinformatics analysis. Shen LI; Liu L; Yang Z; Jiang N Oncol Lett; 2016 Feb; 11(2):1382-1390. PubMed ID: 26893747 [TBL] [Abstract][Full Text] [Related]
20. Analysis of the protein-protein interaction networks of differentially expressed genes in pulmonary embolism. Wang H; Wang C; Zhang L; Lu Y; Duan Q; Gong Z; Liang A; Song H; Wang L Mol Med Rep; 2015 Apr; 11(4):2527-33. PubMed ID: 25434468 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]