These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 28790927)
1. The Role of Sulfide Oxidation Impairment in the Pathogenesis of Primary CoQ Deficiency. Quinzii CM; Luna-Sanchez M; Ziosi M; Hidalgo-Gutierrez A; Kleiner G; Lopez LC Front Physiol; 2017; 8():525. PubMed ID: 28790927 [TBL] [Abstract][Full Text] [Related]
2. Coenzyme Q deficiency causes impairment of the sulfide oxidation pathway. Ziosi M; Di Meo I; Kleiner G; Gao XH; Barca E; Sanchez-Quintero MJ; Tadesse S; Jiang H; Qiao C; Rodenburg RJ; Scalais E; Schuelke M; Willard B; Hatzoglou M; Tiranti V; Quinzii CM EMBO Mol Med; 2017 Jan; 9(1):96-111. PubMed ID: 27856618 [TBL] [Abstract][Full Text] [Related]
3. CoQ deficiency causes disruption of mitochondrial sulfide oxidation, a new pathomechanism associated with this syndrome. Luna-Sánchez M; Hidalgo-Gutiérrez A; Hildebrandt TM; Chaves-Serrano J; Barriocanal-Casado E; Santos-Fandila Á; Romero M; Sayed RK; Duarte J; Prokisch H; Schuelke M; Distelmaier F; Escames G; Acuña-Castroviejo D; López LC EMBO Mol Med; 2017 Jan; 9(1):78-95. PubMed ID: 27856619 [TBL] [Abstract][Full Text] [Related]
5. Use of Tissue Metabolite Analysis and Enzyme Kinetics To Discriminate between Alternate Pathways for Hydrogen Sulfide Metabolism. Augustyn KD; Jackson MR; Jorns MS Biochemistry; 2017 Feb; 56(7):986-996. PubMed ID: 28107627 [TBL] [Abstract][Full Text] [Related]
6. A redox cycle with complex II prioritizes sulfide quinone oxidoreductase-dependent H Kumar R; Landry AP; Guha A; Vitvitsky V; Lee HJ; Seike K; Reddy P; Lyssiotis CA; Banerjee R J Biol Chem; 2022 Jan; 298(1):101435. PubMed ID: 34808207 [TBL] [Abstract][Full Text] [Related]
7. Role of human sulfide: quinone oxidoreductase in H2S metabolism. Jackson MR; Melideo SL; Jorns MS Methods Enzymol; 2015; 554():255-70. PubMed ID: 25725526 [TBL] [Abstract][Full Text] [Related]
8. Tissue-specific oxidative stress and loss of mitochondria in CoQ-deficient Pdss2 mutant mice. Quinzii CM; Garone C; Emmanuele V; Tadesse S; Krishna S; Dorado B; Hirano M FASEB J; 2013 Feb; 27(2):612-21. PubMed ID: 23150520 [TBL] [Abstract][Full Text] [Related]
9. Coenzyme Q10 modulates sulfide metabolism and links the mitochondrial respiratory chain to pathways associated to one carbon metabolism. González-García P; Hidalgo-Gutiérrez A; Mascaraque C; Barriocanal-Casado E; Bakkali M; Ziosi M; Abdihankyzy UB; Sánchez-Hernández S; Escames G; Prokisch H; Martín F; Quinzii CM; López LC Hum Mol Genet; 2020 Nov; 29(19):3296-3311. PubMed ID: 32975579 [TBL] [Abstract][Full Text] [Related]
10. Update on clinical aspects and treatment of selected vitamin-responsive disorders II (riboflavin and CoQ 10). Horvath R J Inherit Metab Dis; 2012 Jul; 35(4):679-87. PubMed ID: 22231380 [TBL] [Abstract][Full Text] [Related]
11. Primary coenzyme Q deficiency in Pdss2 mutant mice causes isolated renal disease. Peng M; Falk MJ; Haase VH; King R; Polyak E; Selak M; Yudkoff M; Hancock WW; Meade R; Saiki R; Lunceford AL; Clarke CF; Gasser DL PLoS Genet; 2008 Apr; 4(4):e1000061. PubMed ID: 18437205 [TBL] [Abstract][Full Text] [Related]
12. Genetic bases and clinical manifestations of coenzyme Q10 (CoQ 10) deficiency. Desbats MA; Lunardi G; Doimo M; Trevisson E; Salviati L J Inherit Metab Dis; 2015 Jan; 38(1):145-56. PubMed ID: 25091424 [TBL] [Abstract][Full Text] [Related]
13. Synthesis and evaluation of potent novel inhibitors of human sulfide:quinone oxidoreductase. Baugh SDP; Jackson MR; Rashad AA; Reitz AB; Lam PYS; Jorns MS Bioorg Med Chem Lett; 2021 Dec; 54():128443. PubMed ID: 34763081 [TBL] [Abstract][Full Text] [Related]
14. Characterization of human mitochondrial PDSS and COQ proteins and their roles in maintaining coenzyme Q Yen HC; Yeh WY; Lee SH; Feng YH; Yang SL Biochim Biophys Acta Bioenerg; 2020 Jul; 1861(7):148192. PubMed ID: 32194061 [TBL] [Abstract][Full Text] [Related]
15. The clinical heterogeneity of coenzyme Q10 deficiency results from genotypic differences in the Coq9 gene. Luna-Sánchez M; Díaz-Casado E; Barca E; Tejada MÁ; Montilla-García Á; Cobos EJ; Escames G; Acuña-Castroviejo D; Quinzii CM; López LC EMBO Mol Med; 2015 May; 7(5):670-87. PubMed ID: 25802402 [TBL] [Abstract][Full Text] [Related]
16. Characterization of Hu M; Jiang Y; Xu JJ Metabolites; 2023 Jun; 13(7):. PubMed ID: 37512520 [TBL] [Abstract][Full Text] [Related]
17. Cupriavidus necator H16 Uses Flavocytochrome Lü C; Xia Y; Liu D; Zhao R; Gao R; Liu H; Xun L Appl Environ Microbiol; 2017 Nov; 83(22):. PubMed ID: 28864655 [TBL] [Abstract][Full Text] [Related]
18. Functional conservation of coenzyme Q biosynthetic genes among yeasts, plants, and humans. Hayashi K; Ogiyama Y; Yokomi K; Nakagawa T; Kaino T; Kawamukai M PLoS One; 2014; 9(6):e99038. PubMed ID: 24911838 [TBL] [Abstract][Full Text] [Related]
19. Human sulfide:quinone oxidoreductase catalyzes the first step in hydrogen sulfide metabolism and produces a sulfane sulfur metabolite. Jackson MR; Melideo SL; Jorns MS Biochemistry; 2012 Aug; 51(34):6804-15. PubMed ID: 22852582 [TBL] [Abstract][Full Text] [Related]
20. Discovery of a first-in-class inhibitor of sulfide:quinone oxidoreductase that protects against adverse cardiac remodelling and heart failure. Jackson MR; Cox KD; Baugh SDP; Wakeen L; Rashad AA; Lam PYS; Polyak B; Jorns MS Cardiovasc Res; 2022 Jun; 118(7):1771-1784. PubMed ID: 34132787 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]