BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 28791091)

  • 1. Taming the beast: fluoromesityl groups induce a dramatic stability enhancement in boroles.
    Zhang Z; Edkins RM; Haehnel M; Wehner M; Eichhorn A; Mailänder L; Meier M; Brand J; Brede F; Müller-Buschbaum K; Braunschweig H; Marder TB
    Chem Sci; 2015 Oct; 6(10):5922-5927. PubMed ID: 28791091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dimeric boroles: effective sources of monomeric boroles for heterocycle synthesis.
    Su X; Baker JJ; Martin CD
    Chem Sci; 2020 Jan; 11(1):126-131. PubMed ID: 32110363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical and electronic properties of air-stable organoboron compounds with strongly electron-accepting bis(fluoromesityl)boryl groups.
    Zhang Z; Edkins RM; Nitsch J; Fucke K; Steffen A; Longobardi LE; Stephan DW; Lambert C; Marder TB
    Chem Sci; 2015 Jan; 6(1):308-321. PubMed ID: 28966759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diboramacrocycles: reversible borole dimerisation-dissociation systems.
    Fuchs S; Jayaraman A; Krummenacher I; Haley L; Baštovanović M; Fest M; Radacki K; Helten H; Braunschweig H
    Chem Sci; 2022 Mar; 13(10):2932-2938. PubMed ID: 35382462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. (Hetero)arene-fused boroles: a broad spectrum of applications.
    He J; Rauch F; Finze M; Marder TB
    Chem Sci; 2020 Nov; 12(1):128-147. PubMed ID: 34163585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scope of the Thermal Ring-Expansion Reaction of Boroles with Organoazides.
    Braunschweig H; Celik MA; Dellermann T; Frenking G; Hammond K; Hupp F; Kelch H; Krummenacher I; Lindl F; Mailänder L; Müssig JH; Ruppert A
    Chemistry; 2017 Jun; 23(33):8006-8013. PubMed ID: 28430374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Boroles from alumoles: accessing boroles with alkyl-substituted backbones
    Bohlen JL; Endres L; Drescher R; Radacki K; Dietz M; Krummenacher I; Braunschweig H
    Chem Sci; 2023 Aug; 14(34):9010-9015. PubMed ID: 37655034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electronic Push-Pull Modulation by Peripheral Substituents in Pentaaryl Boroles.
    Heitkemper T; Sindlinger CP
    Chemistry; 2019 May; 25(26):6628-6637. PubMed ID: 30861220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DFT Studies of Dimerization Reactions of Boroles.
    Wang Z; Zhou Y; Lee KH; Lam WH; Dewhurst RD; Braunschweig H; Marder TB; Lin Z
    Chemistry; 2017 Aug; 23(48):11587-11597. PubMed ID: 28627022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 2,5-Bis-trimethylsilyl substituted boroles.
    Heitkemper T; Naß L; Sindlinger CP
    Dalton Trans; 2020 Feb; 49(8):2706-2714. PubMed ID: 32049092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical reduction and dimerization of 1-chloro-2,3,4,5-tetraphenylborole.
    Braunschweig H; Chiu CW; Wahler J; Radacki K; Kupfer T
    Chemistry; 2010 Oct; 16(40):12229-33. PubMed ID: 20839188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational Predictions of the Beryllium Analogue of Borole, Cp(+), and the Fluorenyl Cation: Highly Stabilized, non-Lewis Acidic Antiaromatic Ring Systems.
    Field-Theodore TE; Wilson DJ; Dutton JL
    Inorg Chem; 2015 Aug; 54(16):8035-41. PubMed ID: 26241788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational studies on heteroleptic trifluoromethyl-substituted phenylboranes.
    Samigullin K; Soltani Y; Lerner HW; Wagner M; Bolte M
    Acta Crystallogr C Struct Chem; 2016 Mar; 72(Pt 3):189-97. PubMed ID: 26942428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis, structure, and reactivity of borole-functionalized ferrocenes.
    Braunschweig H; Chiu CW; Gamon D; Kaupp M; Krummenacher I; Kupfer T; Müller R; Radacki K
    Chemistry; 2012 Sep; 18(37):11732-46. PubMed ID: 22886835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DFT studies on reactions of boroles with carbon monoxide.
    Wang Z; Zhou Y; Marder TB; Lin Z
    Org Biomol Chem; 2017 Aug; 15(33):7019-7027. PubMed ID: 28795756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diverse Reactivity of Dienes with Pentaphenylborole and 1-Phenyl-2,3,4,5-Tetramethylborole Dimer.
    Baker JJ; Al Furaiji KHM; Liyanage OT; Wilson DJD; Dutton JL; Martin CD
    Chemistry; 2019 Jan; 25(6):1581-1587. PubMed ID: 30457687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two derivatives of phenylpyridyl-fused boroles with contrasting electronic properties: decreasing and enhancing the electron accepting ability.
    He J; Rauch F; Krummenacher I; Braunschweig H; Finze M; Marder TB
    Dalton Trans; 2021 Jan; 50(1):355-361. PubMed ID: 33320139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of zwitterionic cobaltocenium borate and borata-alkene derivatives from a borole-radical anion.
    Bauer J; Braunschweig H; Hörl C; Radacki K; Wahler J
    Chemistry; 2013 Sep; 19(40):13396-401. PubMed ID: 23939930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 2-(3-Meth-oxy-phen-yl)-1,3-dihydro-1,3,2-benzodiaza-borole.
    Robinson RS; Sithebe S; Akerman MP
    Acta Crystallogr Sect E Struct Rep Online; 2012 Jul; 68(Pt 7):o2241. PubMed ID: 22798897
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Azidoborolate anions and azidoborole adducts: isolable forms of an unstable borole azide.
    Lindl F; Fantuzzi F; Mailänder L; Hörl C; Bélanger-Chabot G; Braunschweig H
    Chem Commun (Camb); 2022 Apr; 58(30):4735-4738. PubMed ID: 35322835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.