BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 28791459)

  • 1. Three-year lifecycle, large body, and very high threshold temperature in the cricket Gryllus argenteus for special adaptation to desiccation cycle in Malawi.
    Kosumi T; Takeda M
    Naturwissenschaften; 2017 Aug; 104(9-10):70. PubMed ID: 28791459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insect overwintering in a changing climate.
    Bale JS; Hayward SA
    J Exp Biol; 2010 Mar; 213(6):980-94. PubMed ID: 20190123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Local adaptation of photoperiodic plasticity maintains life cycle variation within latitudes in a butterfly.
    Lindestad O; Wheat CW; Nylin S; Gotthard K
    Ecology; 2019 Jan; 100(1):e02550. PubMed ID: 30375642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combining photoperiod and thermal responses to predict phenological mismatch for introduced insects.
    Grevstad FS; Wepprich T; Barker B; Coop LB; Shaw R; Bourchier RS
    Ecol Appl; 2022 Apr; 32(3):e2557. PubMed ID: 35112752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Parental Photoperiod Affects Egg Diapause in a Montane Population of Mormon Crickets (Orthoptera: Tettigoniidae).
    Srygley RB
    Environ Entomol; 2020 Aug; 49(4):895-901. PubMed ID: 32514555
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The consequences of photoperiodism for organisms in new climates.
    Grevstad FS; Coop LB
    Ecol Appl; 2015 Sep; 25(6):1506-17. PubMed ID: 26552260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laboratory acclimation to autumn-like conditions induces freeze tolerance in the spring field cricket Gryllus veletis (Orthoptera: Gryllidae).
    Toxopeus J; McKinnon AH; Štětina T; Turnbull KF; Sinclair BJ
    J Insect Physiol; 2019; 113():9-16. PubMed ID: 30582905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoperiod and temperature separately regulate nymphal development through JH and insulin/TOR signaling pathways in an insect.
    Miki T; Shinohara T; Chafino S; Noji S; Tomioka K
    Proc Natl Acad Sci U S A; 2020 Mar; 117(10):5525-5531. PubMed ID: 32098850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of photoperiod and relative humidity on diapause termination and post-winter development of
    Moraiti CA; Köppler K; Vogt H; Papadopoulos NT
    Bull Entomol Res; 2020 Oct; 110(5):588-596. PubMed ID: 32160932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diapause termination of Rhagoletis cerasi pupae is regulated by local adaptation and phenotypic plasticity: escape in time through bet-hedging strategies.
    Moraiti CA; Nakas CT; Papadopoulos NT
    J Evol Biol; 2014 Jan; 27(1):43-54. PubMed ID: 24192292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Summer egg diapause in a matchstick grasshopper synchronizes the life cycle and buffers thermal extremes.
    Kearney MR; Deutscher J; Kong JD; Hoffmann AA
    Integr Zool; 2018 Jul; 13(4):437-449. PubMed ID: 29436759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative biology of the tropical and temperate species of Rhipicephalus sanguineus sensu lato (Acari: Ixodidae) under different laboratory conditions.
    Labruna MB; Gerardi M; Krawczak FS; Moraes-Filho J
    Ticks Tick Borne Dis; 2017 Jan; 8(1):146-156. PubMed ID: 27793613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Northward expansion of the bivoltine life cycle of the cricket over the last four decades.
    Matsuda N; Tanaka K; Watari Y; Shintani Y; Goto SG; Nisimura T; Izumi Y; Numata H
    Glob Chang Biol; 2018 Dec; 24(12):5622-5628. PubMed ID: 30284375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diapause induction and relaxed selection on alternative developmental pathways in a butterfly.
    Aalberg Haugen IM; Gotthard K
    J Anim Ecol; 2015 Mar; 84(2):464-72. PubMed ID: 25267557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Seasonal adaptations to day length in ecotypes of Diorhabda spp. (Coleoptera: Chrysomelidae) inform selection of agents against saltcedars (Tamarix spp.).
    Dalin P; Bean DW; Dudley TL; Carney VA; Eberts D; Gardner KT; Hebertson E; Jones EN; Kazmer DJ; Michels GJ; O'Meara SA; Thompson DC
    Environ Entomol; 2010 Oct; 39(5):1666-75. PubMed ID: 22546466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diapause termination, post-diapause development and reproduction in the beet webworm, Loxostege sticticalis (Lepidoptera: Pyralidae).
    Jiang XF; Huang SH; Luo LZ; Liu Y; Zhang L
    J Insect Physiol; 2010 Sep; 56(9):1325-31. PubMed ID: 20433846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptations of the reed frog Hyperolius viridiflavus (Amphibia, Anura, Hyperoliidae) to its arid environment. VII. The heat budget of Hyperolius viridiflavus nitidulus and the evolution of an optimized body shape.
    Kobelt F; Linsenmair KE
    J Comp Physiol B; 1995; 165(2):110-24. PubMed ID: 7622673
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reproductive arrest and stress resistance in winter-acclimated Drosophila suzukii.
    Toxopeus J; Jakobs R; Ferguson LV; Gariepy TD; Sinclair BJ
    J Insect Physiol; 2016 Jun; 89():37-51. PubMed ID: 27039032
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intra-Population Alteration on Voltinism of Asian Corn Borer in Response to Climate Warming.
    Liu K; Wang Z; Zhang T; He K
    Biology (Basel); 2023 Jan; 12(2):. PubMed ID: 36829470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Seasonal changes in humidity impact drought resistance in tropical Drosophila leontia: testing developmental effects of thermal versus humidity changes.
    Parkash R; Ranga P
    Comp Biochem Physiol A Mol Integr Physiol; 2014 Mar; 169():33-43. PubMed ID: 24345458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.