BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 28791562)

  • 1. Production of Fumaric Acid by Bioconversion of Corncob Hydrolytes Using an Improved Rhizopus oryzae Strain.
    Wu X; Liu Q; Deng Y; Chen X; Zheng Z; Jiang S; Li X
    Appl Biochem Biotechnol; 2018 Feb; 184(2):553-569. PubMed ID: 28791562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fumaric Acid Production from Alkali-Pretreated Corncob by Fed-Batch Simultaneous Saccharification and Fermentation Combined with Separated Hydrolysis and Fermentation at High Solids Loading.
    Li X; Zhou J; Ouyang S; Ouyang J; Yong Q
    Appl Biochem Biotechnol; 2017 Feb; 181(2):573-583. PubMed ID: 27604834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a low pH fermentation strategy for fumaric acid production by Rhizopus oryzae.
    Roa Engel CA; van Gulik WM; Marang L; van der Wielen LA; Straathof AJ
    Enzyme Microb Technol; 2011 Jan; 48(1):39-47. PubMed ID: 22112769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation of glycerol metabolic pathway by evolutionary engineering of Rhizopus oryzae to strengthen the fumaric acid biosynthesis from crude glycerol.
    Huang D; Wang R; Du W; Wang G; Xia M
    Bioresour Technol; 2015 Nov; 196():263-72. PubMed ID: 26253910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced L-(+)-lactic acid production by an adapted strain of Rhizopus oryzae using corncob hydrolysate.
    Bai DM; Li SZ; Liu ZL; Cui ZF
    Appl Biochem Biotechnol; 2008 Jan; 144(1):79-85. PubMed ID: 18415989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-stage utilization of corn straw by Rhizopus oryzae for fumaric acid production.
    Xu Q; Li S; Fu Y; Tai C; Huang H
    Bioresour Technol; 2010 Aug; 101(15):6262-4. PubMed ID: 20236819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A fermentative approach towards optimizing directed biosynthesis of fumaric acid by Rhizopus oryzae 1526 utilizing apple industry waste biomass.
    Das RK; Brar SK; Verma M
    Fungal Biol; 2015 Dec; 119(12):1279-1290. PubMed ID: 26615750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Omics-based approaches reveal phospholipids remodeling of Rhizopus oryzae responding to furfural stress for fumaric acid-production from xylose.
    Pan X; Liu H; Liu J; Wang C; Wen J
    Bioresour Technol; 2016 Dec; 222():24-32. PubMed ID: 27697734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved continuous fumaric acid production with immobilised Rhizopus oryzae by implementation of a revised nitrogen control strategy.
    Naude A; Nicol W
    N Biotechnol; 2018 Sep; 44():13-22. PubMed ID: 29477600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of metabolic profile of Rhizopus oryzae to enhance fumaric acid production under low pH condition.
    Liu Y; Xu Q; Lv C; Yan C; Li S; Jiang L; Huang H; Ouyang P
    Appl Biochem Biotechnol; 2015 Dec; 177(7):1508-19. PubMed ID: 26481229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A metabolic-based approach to improve xylose utilization for fumaric acid production from acid pretreated wheat bran by Rhizopus oryzae.
    Wang G; Huang D; Li Y; Wen J; Jia X
    Bioresour Technol; 2015 Mar; 180():119-27. PubMed ID: 25594507
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fumaric acid production using alternate fermentation mode by immobilized Rhizopus oryzae-a greener production strategy.
    Sebastian J; Dominguez KV; Brar SK; Rouissi T
    Chemosphere; 2021 Oct; 281():130858. PubMed ID: 34020187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient production of lactic acid from sucrose and corncob hydrolysate by a newly isolated Rhizopus oryzae GY18.
    Guo Y; Yan Q; Jiang Z; Teng C; Wang X
    J Ind Microbiol Biotechnol; 2010 Nov; 37(11):1137-43. PubMed ID: 20556475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic engineering of Rhizopus oryzae: effects of overexpressing pyc and pepc genes on fumaric acid biosynthesis from glucose.
    Zhang B; Skory CD; Yang ST
    Metab Eng; 2012 Sep; 14(5):512-20. PubMed ID: 22814110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced acid tolerance of Rhizopus oryzae during fumaric acid production.
    Liu Y; Lv C; Xu Q; Li S; Huang H; Ouyang P
    Bioprocess Biosyst Eng; 2015 Feb; 38(2):323-8. PubMed ID: 25190324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of fumaric acid by simultaneous saccharification and fermentation of starchy materials with 2-deoxyglucose-resistant mutant strains of Rhizopus oryzae.
    Deng Y; Li S; Xu Q; Gao M; Huang H
    Bioresour Technol; 2012 Mar; 107():363-7. PubMed ID: 22217732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement of fumaric acid production by Rhizopus oryzae using a two-stage dissolved oxygen control strategy.
    Fu YQ; Li S; Chen Y; Xu Q; Huang H; Sheng XY
    Appl Biochem Biotechnol; 2010 Oct; 162(4):1031-8. PubMed ID: 19936636
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced fumaric acid production from brewery wastewater and insight into the morphology of Rhizopus oryzae 1526.
    Das RK; Brar SK
    Appl Biochem Biotechnol; 2014 Mar; 172(6):2974-88. PubMed ID: 24469587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Co-production of fumaric acid and chitin from a nitrogen-rich lignocellulosic material - dairy manure - using a pelletized filamentous fungus Rhizopus oryzae ATCC 20344.
    Liao W; Liu Y; Frear C; Chen S
    Bioresour Technol; 2008 Sep; 99(13):5859-66. PubMed ID: 18006305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic profiling of a Rhizopus oryzae fumaric acid production mutant generated by femtosecond laser irradiation.
    Yu S; Huang D; Wen J; Li S; Chen Y; Jia X
    Bioresour Technol; 2012 Jun; 114():610-5. PubMed ID: 22516248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.