BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1083 related articles for article (PubMed ID: 28791631)

  • 21. Hepatitis C Virus Activates a Neuregulin-Driven Circuit to Modify Surface Expression of Growth Factor Receptors of the ErbB Family.
    Stindt S; Cebula P; Albrecht U; Keitel V; Schulte am Esch J; Knoefel WT; Bartenschlager R; Häussinger D; Bode JG
    PLoS One; 2016; 11(2):e0148711. PubMed ID: 26886748
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evolutionary analysis of the ErbB receptor and ligand families.
    Stein RA; Staros JV
    J Mol Evol; 2000 May; 50(5):397-412. PubMed ID: 10824084
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of epidermal growth factor receptor signaling in the interaction of Neisseria meningitidis with endothelial cells.
    Slanina H; Mündlein S; Hebling S; Schubert-Unkmeir A
    Infect Immun; 2014 Mar; 82(3):1243-55. PubMed ID: 24379285
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Controlled dimerization of ErbB receptors provides evidence for differential signaling by homo- and heterodimers.
    Muthuswamy SK; Gilman M; Brugge JS
    Mol Cell Biol; 1999 Oct; 19(10):6845-57. PubMed ID: 10490623
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cell death induced by TNF or serum starvation is independent of ErbB receptor signaling in MCF-7 breast carcinoma cells.
    Egeblad M; Jäättelä M
    Int J Cancer; 2000 Jun; 86(5):617-25. PubMed ID: 10797281
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Profiling epidermal growth factor receptor and heregulin receptor 3 heteromerization using receptor tyrosine kinase heteromer investigation technology.
    Ayoub MA; See HB; Seeber RM; Armstrong SP; Pfleger KD
    PLoS One; 2013; 8(5):e64672. PubMed ID: 23700486
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microbead arrays for the analysis of ErbB receptor tyrosine kinase activation and dimerization in breast cancer cells.
    Khan IH; Zhao J; Ghosh P; Ziman M; Sweeney C; Kung HJ; Luciw PA
    Assay Drug Dev Technol; 2010 Feb; 8(1):27-36. PubMed ID: 20035613
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Therapeutic targeting of the epidermal growth factor receptor in human cancer.
    Dhomen NS; Mariadason J; Tebbutt N; Scott AM
    Crit Rev Oncog; 2012; 17(1):31-50. PubMed ID: 22471663
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Epidermal growth factor receptor: Structure-function informing the design of anticancer therapeutics.
    Mitchell RA; Luwor RB; Burgess AW
    Exp Cell Res; 2018 Oct; 371(1):1-19. PubMed ID: 30098332
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Neuregulin-1 only induces trans-phosphorylation between ErbB receptor heterodimer partners.
    Li Z; Mei Y; Liu X; Zhou M
    Cell Signal; 2007 Mar; 19(3):466-71. PubMed ID: 16978839
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Negative constraints underlie the ErbB specificity of epidermal growth factor-like ligands.
    van der Woning SP; van Rotterdam W; Nabuurs SB; Venselaar H; Jacobs-Oomen S; Wingens M; Vriend G; Stortelers C; van Zoelen EJ
    J Biol Chem; 2006 Dec; 281(52):40033-40. PubMed ID: 17032651
    [TBL] [Abstract][Full Text] [Related]  

  • 32. ErbB receptors, their ligands, and the consequences of their activation and inhibition in the myocardium.
    Fuller SJ; Sivarajah K; Sugden PH
    J Mol Cell Cardiol; 2008 May; 44(5):831-54. PubMed ID: 18430438
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Peptides for Dual Targeting of ErbB1 and ErbB2: Blocking EGFR Cell Signaling Transduction Pathways for Cancer Chemotherapy.
    Patnaik SK; Swaroop AK; Nagarjuna P; Nanjan MJ; Chandrasekar MJN
    Curr Mol Pharmacol; 2024; 17(1):e240223214012. PubMed ID: 36843255
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functional isolation of activated and unilaterally phosphorylated heterodimers of ERBB2 and ERBB3 as scaffolds in ligand-dependent signaling.
    Zhang Q; Park E; Kani K; Landgraf R
    Proc Natl Acad Sci U S A; 2012 Aug; 109(33):13237-42. PubMed ID: 22733765
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inhibition of the EGF receptor by binding of MIG6 to an activating kinase domain interface.
    Zhang X; Pickin KA; Bose R; Jura N; Cole PA; Kuriyan J
    Nature; 2007 Nov; 450(7170):741-4. PubMed ID: 18046415
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The expression of epidermal growth factor receptors and their ligands (epidermal growth factor, neuregulin, amphiregulin) in the bitch uterus during the estrus cycle.
    Sağsöz H; Liman N; Saruhan BG; Küçükaslan İ
    Anim Reprod Sci; 2014 Jun; 147(3-4):161-79. PubMed ID: 24813021
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Functional interaction between mouse erbB3 and wild-type rat c-neu in transgenic mouse mammary tumor cells.
    Kim A; Liu B; Ordonez-Ercan D; Alvarez KM; Jones LD; McKimmey C; Edgerton SM; Yang X; Thor AD
    Breast Cancer Res; 2005; 7(5):R708-18. PubMed ID: 16168116
    [TBL] [Abstract][Full Text] [Related]  

  • 38. EGFR kinase possesses a broad specificity for ErbB phosphorylation sites, and ligand increases catalytic-centre activity without affecting substrate binding affinity.
    Fan YX; Wong L; Johnson GR
    Biochem J; 2005 Dec; 392(Pt 3):417-23. PubMed ID: 16122376
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Protein-tyrosine phosphatase PTPN9 negatively regulates ErbB2 and epidermal growth factor receptor signaling in breast cancer cells.
    Yuan T; Wang Y; Zhao ZJ; Gu H
    J Biol Chem; 2010 May; 285(20):14861-14870. PubMed ID: 20335174
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Flotillin depletion affects ErbB protein levels in different human breast cancer cells.
    Asp N; Pust S; Sandvig K
    Biochim Biophys Acta; 2014 Sep; 1843(9):1987-96. PubMed ID: 24747692
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 55.