BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 28791878)

  • 1. Role of Ergothioneine in Microbial Physiology and Pathogenesis.
    Cumming BM; Chinta KC; Reddy VP; Steyn AJC
    Antioxid Redox Signal; 2018 Feb; 28(6):431-444. PubMed ID: 28791878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ergothioneine Maintains Redox and Bioenergetic Homeostasis Essential for Drug Susceptibility and Virulence of Mycobacterium tuberculosis.
    Saini V; Cumming BM; Guidry L; Lamprecht DA; Adamson JH; Reddy VP; Chinta KC; Mazorodze JH; Glasgow JN; Richard-Greenblatt M; Gomez-Velasco A; Bach H; Av-Gay Y; Eoh H; Rhee K; Steyn AJC
    Cell Rep; 2016 Jan; 14(3):572-585. PubMed ID: 26774486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reductive Stress: New Insights in Physiology and Drug Tolerance of
    Mavi PS; Singh S; Kumar A
    Antioxid Redox Signal; 2020 Jun; 32(18):1348-1366. PubMed ID: 31621379
    [No Abstract]   [Full Text] [Related]  

  • 4. Uncovering the roles of
    Chen Y-C; Yang X; Wang N; Sampson NS
    mSphere; 2024 Apr; 9(4):e0006124. PubMed ID: 38564709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redox biology of tuberculosis pathogenesis.
    Trivedi A; Singh N; Bhat SA; Gupta P; Kumar A
    Adv Microb Physiol; 2012; 60():263-324. PubMed ID: 22633061
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alternative Thiol-Based Redox Systems.
    Salinas G; Comini MA
    Antioxid Redox Signal; 2018 Feb; 28(6):407-409. PubMed ID: 29207877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Physiology and Genetics of Oxidative Stress in Mycobacteria.
    Cumming BM; Lamprecht DA; Wells RM; Saini V; Mazorodze JH; Steyn AJC
    Microbiol Spectr; 2014 Jun; 2(3):. PubMed ID: 26103972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Host-pathogen redox dynamics modulate Mycobacterium tuberculosis pathogenesis.
    Pacl HT; Reddy VP; Saini V; Chinta KC; Steyn AJC
    Pathog Dis; 2018 Jul; 76(5):. PubMed ID: 29873719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mycobacterium tuberculosis WhiB3 maintains redox homeostasis by regulating virulence lipid anabolism to modulate macrophage response.
    Singh A; Crossman DK; Mai D; Guidry L; Voskuil MI; Renfrow MB; Steyn AJ
    PLoS Pathog; 2009 Aug; 5(8):e1000545. PubMed ID: 19680450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gamma-glutamylcysteine protects ergothioneine-deficient Mycobacterium tuberculosis mutants against oxidative and nitrosative stress.
    Sao Emani C; Williams MJ; Van Helden PD; Taylor MJC; Wiid IJ; Baker B
    Biochem Biophys Res Commun; 2018 Jan; 495(1):174-178. PubMed ID: 29101028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mycobacterium tuberculosis WhiB3: a novel iron-sulfur cluster protein that regulates redox homeostasis and virulence.
    Saini V; Farhana A; Steyn AJ
    Antioxid Redox Signal; 2012 Apr; 16(7):687-97. PubMed ID: 22010944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A microbial transporter of the dietary antioxidant ergothioneine.
    Dumitrescu DG; Gordon EM; Kovalyova Y; Seminara AB; Duncan-Lowey B; Forster ER; Zhou W; Booth CJ; Shen A; Kranzusch PJ; Hatzios SK
    Cell; 2022 Nov; 185(24):4526-4540.e18. PubMed ID: 36347253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reengineering redox sensitive GFP to measure mycothiol redox potential of Mycobacterium tuberculosis during infection.
    Bhaskar A; Chawla M; Mehta M; Parikh P; Chandra P; Bhave D; Kumar D; Carroll KS; Singh A
    PLoS Pathog; 2014 Jan; 10(1):e1003902. PubMed ID: 24497832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemistry and Redox Biology of Mycothiol.
    Reyes AM; Pedre B; De Armas MI; Tossounian MA; Radi R; Messens J; Trujillo M
    Antioxid Redox Signal; 2018 Feb; 28(6):487-504. PubMed ID: 28372502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ergothioneine is a secreted antioxidant in Mycobacterium smegmatis.
    Sao Emani C; Williams MJ; Wiid IJ; Hiten NF; Viljoen AJ; Pietersen RD; van Helden PD; Baker B
    Antimicrob Agents Chemother; 2013 Jul; 57(7):3202-7. PubMed ID: 23629716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox homeostasis in mycobacteria: the key to tuberculosis control?
    Kumar A; Farhana A; Guidry L; Saini V; Hondalus M; Steyn AJ
    Expert Rev Mol Med; 2011 Dec; 13():e39. PubMed ID: 22172201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regeneration of ergothioneine after reaction with singlet oxygen.
    Oumari M; Goldfuss B; Stoffels C; Schmalz HG; GrĂ¼ndemann D
    Free Radic Biol Med; 2019 Apr; 134():498-504. PubMed ID: 30721726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of low molecular weight thiols in Mycobacterium tuberculosis.
    Sao Emani C; Gallant JL; Wiid IJ; Baker B
    Tuberculosis (Edinb); 2019 May; 116():44-55. PubMed ID: 31153518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Oxidative Stress Network of Mycobacterium tuberculosis Reveals Coordination between Radical Detoxification Systems.
    Nambi S; Long JE; Mishra BB; Baker R; Murphy KC; Olive AJ; Nguyen HP; Shaffer SA; Sassetti CM
    Cell Host Microbe; 2015 Jun; 17(6):829-37. PubMed ID: 26067605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. What Is the Redox Potential of Ergothioneine?
    Hondal RJ
    Antioxid Redox Signal; 2023 Jun; 38(16-18):1212-1213. PubMed ID: 36515169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.