These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 28792517)

  • 21. RNA-Seq vs dual- and single-channel microarray data: sensitivity analysis for differential expression and clustering.
    Sîrbu A; Kerr G; Crane M; Ruskin HJ
    PLoS One; 2012; 7(12):e50986. PubMed ID: 23251411
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Benchmarking differential expression analysis tools for RNA-Seq: normalization-based vs. log-ratio transformation-based methods.
    Quinn TP; Crowley TM; Richardson MF
    BMC Bioinformatics; 2018 Jul; 19(1):274. PubMed ID: 30021534
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of normalization and differential expression analyses using RNA-Seq data from 726 individual Drosophila melanogaster.
    Lin Y; Golovnina K; Chen ZX; Lee HN; Negron YL; Sultana H; Oliver B; Harbison ST
    BMC Genomics; 2016 Jan; 17():28. PubMed ID: 26732976
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transcript Profiling Using Long-Read Sequencing Technologies.
    Bayega A; Wang YC; Oikonomopoulos S; Djambazian H; Fahiminiya S; Ragoussis J
    Methods Mol Biol; 2018; 1783():121-147. PubMed ID: 29767360
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A comparison of per sample global scaling and per gene normalization methods for differential expression analysis of RNA-seq data.
    Li X; Brock GN; Rouchka EC; Cooper NGF; Wu D; O'Toole TE; Gill RS; Eteleeb AM; O'Brien L; Rai SN
    PLoS One; 2017; 12(5):e0176185. PubMed ID: 28459823
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of RNA-Seq by poly (A) capture, ribosomal RNA depletion, and DNA microarray for expression profiling.
    Zhao W; He X; Hoadley KA; Parker JS; Hayes DN; Perou CM
    BMC Genomics; 2014 Jun; 15(1):419. PubMed ID: 24888378
    [TBL] [Abstract][Full Text] [Related]  

  • 27. SPARTA: Simple Program for Automated reference-based bacterial RNA-seq Transcriptome Analysis.
    Johnson BK; Scholz MB; Teal TK; Abramovitch RB
    BMC Bioinformatics; 2016 Feb; 17():66. PubMed ID: 26847232
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Predicting gene regulatory networks of soybean nodulation from RNA-Seq transcriptome data.
    Zhu M; Dahmen JL; Stacey G; Cheng J
    BMC Bioinformatics; 2013 Sep; 14():278. PubMed ID: 24053776
    [TBL] [Abstract][Full Text] [Related]  

  • 29. NPEBseq: nonparametric empirical bayesian-based procedure for differential expression analysis of RNA-seq data.
    Bi Y; Davuluri RV
    BMC Bioinformatics; 2013 Aug; 14():262. PubMed ID: 23981227
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Next-generation sequencing facilitates quantitative analysis of wild-type and Nrl(-/-) retinal transcriptomes.
    Brooks MJ; Rajasimha HK; Roger JE; Swaroop A
    Mol Vis; 2011; 17():3034-54. PubMed ID: 22162623
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A differential k-mer analysis pipeline for comparing RNA-Seq transcriptome and meta-transcriptome datasets without a reference.
    Chan CK; Rosic N; Lorenc MT; Visendi P; Lin M; Kaniewska P; Ferguson BJ; Gresshoff PM; Batley J; Edwards D
    Funct Integr Genomics; 2019 Mar; 19(2):363-371. PubMed ID: 30483906
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis of transcriptome complexity through RNA sequencing in normal and failing murine hearts.
    Lee JH; Gao C; Peng G; Greer C; Ren S; Wang Y; Xiao X
    Circ Res; 2011 Dec; 109(12):1332-41. PubMed ID: 22034492
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells.
    Ramsköld D; Luo S; Wang YC; Li R; Deng Q; Faridani OR; Daniels GA; Khrebtukova I; Loring JF; Laurent LC; Schroth GP; Sandberg R
    Nat Biotechnol; 2012 Aug; 30(8):777-82. PubMed ID: 22820318
    [TBL] [Abstract][Full Text] [Related]  

  • 34. RNA-Seq: revelation of the messengers.
    Van Verk MC; Hickman R; Pieterse CM; Van Wees SC
    Trends Plant Sci; 2013 Apr; 18(4):175-9. PubMed ID: 23481128
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analysis of Drosophila melanogaster testis transcriptome.
    Vedelek V; Bodai L; Grézal G; Kovács B; Boros IM; Laurinyecz B; Sinka R
    BMC Genomics; 2018 Sep; 19(1):697. PubMed ID: 30249207
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Data Analysis in Single-Cell Transcriptome Sequencing.
    Gao S
    Methods Mol Biol; 2018; 1754():311-326. PubMed ID: 29536451
    [TBL] [Abstract][Full Text] [Related]  

  • 37. PROPER: comprehensive power evaluation for differential expression using RNA-seq.
    Wu H; Wang C; Wu Z
    Bioinformatics; 2015 Jan; 31(2):233-41. PubMed ID: 25273110
    [TBL] [Abstract][Full Text] [Related]  

  • 38. BinPacker: Packing-Based De Novo Transcriptome Assembly from RNA-seq Data.
    Liu J; Li G; Chang Z; Yu T; Liu B; McMullen R; Chen P; Huang X
    PLoS Comput Biol; 2016 Feb; 12(2):e1004772. PubMed ID: 26894997
    [TBL] [Abstract][Full Text] [Related]  

  • 39. RNA-Skim: a rapid method for RNA-Seq quantification at transcript level.
    Zhang Z; Wang W
    Bioinformatics; 2014 Jun; 30(12):i283-i292. PubMed ID: 24931995
    [TBL] [Abstract][Full Text] [Related]  

  • 40. GC-content normalization for RNA-Seq data.
    Risso D; Schwartz K; Sherlock G; Dudoit S
    BMC Bioinformatics; 2011 Dec; 12():480. PubMed ID: 22177264
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.