These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 28792901)

  • 1. An Automated Classification of Pathological Gait Using Unobtrusive Sensing Technology.
    Dolatabadi E; Taati B; Mihailidis A
    IEEE Trans Neural Syst Rehabil Eng; 2017 Dec; 25(12):2336-2346. PubMed ID: 28792901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated classification of pathological gait after stroke using ubiquitous sensing technology.
    Dolatabadi E; Taati B; Mihailidis A
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():6150-6153. PubMed ID: 28269656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gaussian Process Trajectory Learning and Synthesis of Individualized Gait Motions.
    Hong J; Chun C; Kim SJ; Park FC
    IEEE Trans Neural Syst Rehabil Eng; 2019 Jun; 27(6):1236-1245. PubMed ID: 31056501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a Gait Analysis Application for Assessing Upper and Lower Limb Movements to Detect Pathological Gait.
    Taishaku A; Yamada S; Iseki C; Aoyagi Y; Ueda S; Kondo T; Kobayashi Y; Sahashi K; Shimizu Y; Yamanaka T; Tanikawa M; Ohta Y; Mase M
    Sensors (Basel); 2024 Sep; 24(19):. PubMed ID: 39409369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detecting compensatory movements of stroke survivors using pressure distribution data and machine learning algorithms.
    Cai S; Li G; Zhang X; Huang S; Zheng H; Ma K; Xie L
    J Neuroeng Rehabil; 2019 Nov; 16(1):131. PubMed ID: 31684970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous Recognition and Assessment of Post-Stroke Hemiparetic Gait by Fusing Kinematic, Kinetic, and Electrophysiological Data.
    Cui C; Bian GB; Hou ZG; Zhao J; Su G; Zhou H; Peng L; Wang W
    IEEE Trans Neural Syst Rehabil Eng; 2018 Apr; 26(4):856-864. PubMed ID: 29641390
    [TBL] [Abstract][Full Text] [Related]  

  • 7. IMU-based gait analysis in lower limb prosthesis users: Comparison of step demarcation algorithms.
    Bastas G; Fleck JJ; Peters RA; Zelik KE
    Gait Posture; 2018 Jul; 64():30-37. PubMed ID: 29807270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Support vector machine for classification of walking conditions of persons after stroke with dropped foot.
    Lau HY; Tong KY; Zhu H
    Hum Mov Sci; 2009 Aug; 28(4):504-14. PubMed ID: 19428134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temporospatial characteristics of gait in patients with lower limb muscle hypertonia after traumatic brain injury.
    Chow JW; Yablon SA; Horn TS; Stokic DS
    Brain Inj; 2010; 24(13-14):1575-84. PubMed ID: 20973631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Classifying lower extremity muscle fatigue during walking using machine learning and inertial sensors.
    Zhang J; Lockhart TE; Soangra R
    Ann Biomed Eng; 2014 Mar; 42(3):600-12. PubMed ID: 24081829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of stroke patient walking dynamics using a tri-axial accelerometer.
    Mizuike C; Ohgi S; Morita S
    Gait Posture; 2009 Jul; 30(1):60-4. PubMed ID: 19349181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Newly Identified Gait Patterns in Patients With Multiple Sclerosis May Be Related to Push-off Quality.
    Kempen JC; Doorenbosch CA; Knol DL; de Groot V; Beckerman H
    Phys Ther; 2016 Nov; 96(11):1744-1752. PubMed ID: 27174257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Multiple Regression Approach to Normalization of Spatiotemporal Gait Features.
    Wahid F; Begg R; Lythgo N; Hass CJ; Halgamuge S; Ackland DC
    J Appl Biomech; 2016 Apr; 32(2):128-39. PubMed ID: 26426798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Walking Gait Step Length Asymmetry Induced by Handheld Device.
    Abid M; Renaudin V; Aoustin Y; Le-Carpentier E; Robert T
    IEEE Trans Neural Syst Rehabil Eng; 2017 Nov; 25(11):2075-2083. PubMed ID: 28541210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gait Phase Detection for Lower-Limb Exoskeletons using Foot Motion Data from a Single Inertial Measurement Unit in Hemiparetic Individuals.
    Sánchez Manchola MD; Pinto Bernal MJ; Munera M; Cifuentes CA
    Sensors (Basel); 2019 Jul; 19(13):. PubMed ID: 31284619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased power generation in impaired lower extremities correlated with changes in walking speeds in sub-acute stroke patients.
    Brincks J; Nielsen JF
    Clin Biomech (Bristol); 2012 Feb; 27(2):138-44. PubMed ID: 21899933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Training conditions influence walking kinematics and self-selected walking speed in patients with neurological impairments.
    Williams G; Clark R; Schache A; Fini NA; Moore L; Morris ME; McCrory PR
    J Neurotrauma; 2011 Feb; 28(2):281-7. PubMed ID: 21174634
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Classification of gait disorders following traumatic brain injury.
    Williams G; Lai D; Schache A; Morris ME
    J Head Trauma Rehabil; 2015; 30(2):E13-23. PubMed ID: 24695264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A gait abnormality measure based on root mean square of trunk acceleration.
    Sekine M; Tamura T; Yoshida M; Suda Y; Kimura Y; Miyoshi H; Kijima Y; Higashi Y; Fujimoto T
    J Neuroeng Rehabil; 2013 Dec; 10():118. PubMed ID: 24370075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monitoring of Gait Quality in Patients With Chronic Pain of Lower Limbs.
    Terrier P; Le Carre J; Connaissa ML; Leger B; Luthi F
    IEEE Trans Neural Syst Rehabil Eng; 2017 Oct; 25(10):1843-1852. PubMed ID: 28368823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.