BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 28793185)

  • 1. Temperature- and/or pH-Responsive Surfaces with Controllable Wettability: From Parahydrophobicity to Superhydrophilicity.
    Frysali MA; Anastasiadis SH
    Langmuir; 2017 Sep; 33(36):9106-9114. PubMed ID: 28793185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellulose Acetate-Poly(N-isopropylacrylamide)-Based Functional Surfaces with Temperature-Triggered Switchable Wettability.
    Ganesh VA; Ranganath AS; Sridhar R; Raut HK; Jayaraman S; Sahay R; Ramakrishna S; Baji A
    Macromol Rapid Commun; 2015 Jul; 36(14):1368-73. PubMed ID: 25965973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of functional polymer surfaces with controlled wettability.
    Anastasiadis SH
    Langmuir; 2013 Jul; 29(30):9277-90. PubMed ID: 23789943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intelligent dual-responsive cellulose surfaces via surface-initiated ATRP.
    Lindqvist J; Nyström D; Ostmark E; Antoni P; Carlmark A; Johansson M; Hult A; Malmström E
    Biomacromolecules; 2008 Aug; 9(8):2139-45. PubMed ID: 18636775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature-Responsive, Femtosecond Laser-Ablated Ceramic Surfaces with Switchable Wettability for On-Demand Droplet Transfer.
    Zheng J; Yang B; Wang H; Zhou L; Zhang Z; Zhou Z
    ACS Appl Mater Interfaces; 2023 Mar; 15(10):13740-13752. PubMed ID: 36857747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Terminal-functionality effect of poly(N-isopropylacrylamide) brush surfaces on temperature-controlled cell adhesion/detachment.
    Matsuzaka N; Nakayama M; Takahashi H; Yamato M; Kikuchi A; Okano T
    Biomacromolecules; 2013 Sep; 14(9):3164-71. PubMed ID: 23909471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast Transport of Water Droplets over a Thermo-Switchable Surface Using Rewritable Wettability Gradient.
    Banuprasad TN; Vinay TV; Subash CK; Varghese S; George SD; Varanakkottu SN
    ACS Appl Mater Interfaces; 2017 Aug; 9(33):28046-28054. PubMed ID: 28750164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. One-step hydrothermal creation of hierarchical microstructures toward superhydrophilic and superhydrophobic surfaces.
    Liu X; He J
    Langmuir; 2009 Oct; 25(19):11822-6. PubMed ID: 19788228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of the hydrophobic basal layer of thermoresponsive block co-polymer brushes on thermally-induced cell sheet harvest.
    Matsuzaka N; Takahashi H; Nakayama M; Kikuchi A; Okano T
    J Biomater Sci Polym Ed; 2012; 23(10):1301-14. PubMed ID: 21722425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From superhydrophobicity and water repellency to superhydrophilicity: smart polymer-functionalized surfaces.
    Stratakis E; Mateescu A; Barberoglou M; Vamvakaki M; Fotakis C; Anastasiadis SH
    Chem Commun (Camb); 2010 Jun; 46(23):4136-8. PubMed ID: 20467673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Influence of Structure Heights and Opening Angles of Micro- and Nanocones on the Macroscopic Surface Wetting Properties.
    Schneider L; Laustsen M; Mandsberg N; Taboryski R
    Sci Rep; 2016 Feb; 6():21400. PubMed ID: 26892169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wettability and antifouling behavior on the surfaces of superhydrophilic polymer brushes.
    Kobayashi M; Terayama Y; Yamaguchi H; Terada M; Murakami D; Ishihara K; Takahara A
    Langmuir; 2012 May; 28(18):7212-22. PubMed ID: 22500465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tunable wetting of polymer surfaces.
    Yilgor I; Bilgin S; Isik M; Yilgor E
    Langmuir; 2012 Oct; 28(41):14808-14. PubMed ID: 22989033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micro-micro hierarchy replacing micro-nano hierarchy: a precisely controlled way to produce wear-resistant superhydrophobic polymer surfaces.
    Huovinen E; Hirvi J; Suvanto M; Pakkanen TA
    Langmuir; 2012 Oct; 28(41):14747-55. PubMed ID: 23009694
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature and pH dual-responsive coatings of oligoperoxide-graft-poly(N-isopropylacrylamide): wettability, morphology, and protein adsorption.
    Stetsyshyn Y; Zemla J; Zolobko O; Fornal K; Budkowski A; Kostruba A; Donchak V; Harhay K; Awsiuk K; Rysz J; Bernasik A; Voronov S
    J Colloid Interface Sci; 2012 Dec; 387(1):95-105. PubMed ID: 22939257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Femtosecond Laser-Induced Underwater Superoleophobic Surfaces with Reversible pH-Responsive Wettability.
    Zhang J; Yong J; Yang Q; Chen F; Hou X
    Langmuir; 2019 Mar; 35(9):3295-3301. PubMed ID: 30742769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption and wetting characterization of hydrophobic SBA-15 silicas.
    Bernardoni F; Fadeev AY
    J Colloid Interface Sci; 2011 Apr; 356(2):690-8. PubMed ID: 21306725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wetting transition on hydrophobic surfaces covered by polyelectrolyte brushes.
    Muller P; Sudre G; Théodoly O
    Langmuir; 2008 Sep; 24(17):9541-50. PubMed ID: 18652425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Smart Copolymer-Functionalized Flexible Surfaces with Photoswitchable Wettability: From Superhydrophobicity with "Rose Petal" Effect to Superhydrophilicity.
    Zong C; Hu M; Azhar U; Chen X; Zhang Y; Zhang S; Lu C
    ACS Appl Mater Interfaces; 2019 Jul; 11(28):25436-25444. PubMed ID: 31268647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Designing surfaces with wettability that varies in response to solute identity and concentration.
    Liao KS; Fu H; Wan A; Batteas JD; Bergbreiter DE
    Langmuir; 2009 Jan; 25(1):26-8. PubMed ID: 19115863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.