These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 28793185)

  • 21. Superhydrophobic surfaces from hierarchically structured wrinkled polymers.
    Li Y; Dai S; John J; Carter KR
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):11066-73. PubMed ID: 24131534
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of the Atmosphere on the Wettability of Polymer Brushes.
    Schubotz S; Besford QA; Nazari S; Uhlmann P; Bittrich E; Sommer JU; Auernhammer GK
    Langmuir; 2023 Apr; 39(14):4872-4880. PubMed ID: 36995334
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Topographical Design and Thermal-Induced Organization of Interfacial Water Structure to Regulate the Wetting State of Surfaces.
    Wang Y; Zhao W; Han M; Xu J; Zhou X; Luu W; Han L; Tam KC
    JACS Au; 2022 Sep; 2(9):1989-2000. PubMed ID: 36186561
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reversible superhydrophobic-superhydrophilic transition of ZnO nanorod/epoxy composite films.
    Liu Y; Lin Z; Lin W; Moon KS; Wong CP
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):3959-64. PubMed ID: 22764733
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Switching water droplet adhesion using responsive polymer brushes.
    Liu X; Ye Q; Yu B; Liang Y; Liu W; Zhou F
    Langmuir; 2010 Jul; 26(14):12377-82. PubMed ID: 20557059
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Switchable wettability on cooperative dual-responsive poly-L-lysine surface.
    Guo Y; Xia F; Xu L; Li J; Yang W; Jiang L
    Langmuir; 2010 Jan; 26(2):1024-8. PubMed ID: 20030299
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Controlling the wettability of hierarchically structured thermoplastics.
    Cortese B; Morgan H
    Langmuir; 2012 Jan; 28(1):896-904. PubMed ID: 22043942
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Randomly heterogeneous oleophobic/pH-responsive polymer coatings with reversible wettability transition for multifunctional fabrics and controllable oil-water separation.
    Chi H; Xu Z; Zhang T; Li X; Wu Z; Zhao Y
    J Colloid Interface Sci; 2021 Jul; 594():122-130. PubMed ID: 33756360
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Superhydrophobic surfaces prepared by microstructuring of silicon using a femtosecond laser.
    Baldacchini T; Carey JE; Zhou M; Mazur E
    Langmuir; 2006 May; 22(11):4917-9. PubMed ID: 16700574
    [TBL] [Abstract][Full Text] [Related]  

  • 30. UVO-tunable superhydrophobic to superhydrophilic wetting transition on biomimetic nanostructured surfaces.
    Han JT; Kim S; Karim A
    Langmuir; 2007 Feb; 23(5):2608-14. PubMed ID: 17269808
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Temperature controlled surface hydrophobicity and interaction forces induced by poly (N-isopropylacrylamide).
    Burdukova E; Li H; Ishida N; O'Shea JP; Franks GV
    J Colloid Interface Sci; 2010 Feb; 342(2):586-92. PubMed ID: 19913799
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thermally-responsive surfaces comprising grafted poly(N-isopropylacrylamide) chains: Surface characterisation and reversible capture of dispersed polymer particles.
    Liu R; De Leonardis P; Tirelli N; Saunders BR
    J Colloid Interface Sci; 2009 Dec; 340(2):166-75. PubMed ID: 19781710
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multi-Stimuli-Responsive Polymer/Inorganic Janus Composite Nanoparticles.
    Chen X; Chen Z; Ma L; Yi Z
    Langmuir; 2022 Jan; 38(1):422-429. PubMed ID: 34962810
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reversible superhydrophilicity and superhydrophobicity on a lotus-leaf pattern.
    de Leon A; Advincula RC
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22666-72. PubMed ID: 25412015
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Smart Surfaces with pH-Responsiveness Enhanced by Multiscale Hierarchical Structures Fabricated by Laser Direct Writing.
    Long J; Liu S; Li N; Yuan G; Liu Y; Huang Q; Li J; Zhang H; Wang M
    ACS Appl Mater Interfaces; 2023 Dec; 15(48):56490-56499. PubMed ID: 37976307
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Wettability control of ZnO nanoparticles for universal applications.
    Lee M; Kwak G; Yong K
    ACS Appl Mater Interfaces; 2011 Sep; 3(9):3350-6. PubMed ID: 21819107
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Patterned superhydrophobic metallic surfaces.
    Kietzig AM; Hatzikiriakos SG; Englezos P
    Langmuir; 2009 Apr; 25(8):4821-7. PubMed ID: 19267439
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Micro-and nanostructured silicon-based superomniphobic surfaces.
    Nguyen TP; Boukherroub R; Thomy V; Coffinier Y
    J Colloid Interface Sci; 2014 Feb; 416():280-8. PubMed ID: 24370432
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Solute- and temperature-responsive "smart" grafts and supported membranes formed by covalent layer-by-layer assembly.
    Allen AL; Tan KJ; Fu H; Batteas JD; Bergbreiter DE
    Langmuir; 2012 Mar; 28(11):5237-42. PubMed ID: 22369512
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reversible photo-/thermoresponsive structured polymer surfaces modified with a spirobenzopyran-containing copolymer for tunable wettability.
    Joseph G; Pichardo J; Chen G
    Analyst; 2010 Sep; 135(9):2303-8. PubMed ID: 20668744
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.