These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 28793221)

  • 1. Temporal Variation in Single-Cell Power-Law Rheology Spans the Ensemble Variation of Cell Population.
    Cai P; Takahashi R; Kuribayashi-Shigetomi K; Subagyo A; Sueoka K; Maloney JM; Van Vliet KJ; Okajima T
    Biophys J; 2017 Aug; 113(3):671-678. PubMed ID: 28793221
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantifying cell-to-cell variation in power-law rheology.
    Cai P; Mizutani Y; Tsuchiya M; Maloney JM; Fabry B; Van Vliet KJ; Okajima T
    Biophys J; 2013 Sep; 105(5):1093-102. PubMed ID: 24010652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical twisting to monitor the rheology of single cells.
    de Saint Vincent MR
    Biorheology; 2016 May; 53(2):69-80. PubMed ID: 27231840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Power-law rheology analysis of cells undergoing micropipette aspiration.
    Zhou EH; Quek ST; Lim CT
    Biomech Model Mechanobiol; 2010 Oct; 9(5):563-72. PubMed ID: 20179987
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using cell monolayer rheology to probe average single cell mechanical properties.
    Sander M; Flesch J; Ott A
    Biorheology; 2015; 52(4):269-78. PubMed ID: 26639359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large Amplitude Oscillatory Shear Rheology of Living Fibroblasts: Path-Dependent Steady States.
    Sander M; Dobicki H; Ott A
    Biophys J; 2017 Oct; 113(7):1561-1573. PubMed ID: 28978448
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analyzing the interplay between single cell rheology and force generation through large deformation finite element models.
    Monteiro E; Yvonnet J; He QC; Cardoso O; Asnacios A
    Biomech Model Mechanobiol; 2011 Dec; 10(6):813-30. PubMed ID: 21181227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A power-law rheology-based finite element model for single cell deformation.
    Zhou EH; Xu F; Quek ST; Lim CT
    Biomech Model Mechanobiol; 2012 Sep; 11(7):1075-84. PubMed ID: 22307682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The number distribution of complex shear modulus of single cells measured by atomic force microscopy.
    Hiratsuka S; Mizutani Y; Tsuchiya M; Kawahara K; Tokumoto H; Okajima T
    Ultramicroscopy; 2009 Jul; 109(8):937-41. PubMed ID: 19345501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing the viscoelastic behavior of cultured airway smooth muscle cells with atomic force microscopy: stiffening induced by contractile agonist.
    Smith BA; Tolloczko B; Martin JG; Grütter P
    Biophys J; 2005 Apr; 88(4):2994-3007. PubMed ID: 15665124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Viscoelastic Properties of Confluent MDCK II Cells Obtained from Force Cycle Experiments.
    Brückner BR; Nöding H; Janshoff A
    Biophys J; 2017 Feb; 112(4):724-735. PubMed ID: 28256232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Geometric confinement influences cellular mechanical properties I -- adhesion area dependence.
    Su J; Jiang X; Welsch R; Whitesides GM; So PT
    Mol Cell Biomech; 2007 Jun; 4(2):87-104. PubMed ID: 17937113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microrheology of human lung epithelial cells measured by atomic force microscopy.
    Alcaraz J; Buscemi L; Grabulosa M; Trepat X; Fabry B; Farré R; Navajas D
    Biophys J; 2003 Mar; 84(3):2071-9. PubMed ID: 12609908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a synovial fluid analogue with bio-relevant rheology for wear testing of orthopaedic implants.
    Smith AM; Fleming L; Wudebwe U; Bowen J; Grover LM
    J Mech Behav Biomed Mater; 2014 Apr; 32():177-184. PubMed ID: 24469228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Soft glass rheology in liquid crystalline gels formed by a monodisperse dipeptide.
    Nair GG; Krishna Prasad S; Bhargavi R; Jayalakshmi V; Shanker G; Yelamaggad CV
    J Phys Chem B; 2010 Jan; 114(2):697-704. PubMed ID: 20028007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A general approach for the microrheology of cancer cells by atomic force microscopy.
    Wang B; Lançon P; Bienvenu C; Vierling P; Di Giorgio C; Bossis G
    Micron; 2013 Jan; 44():287-97. PubMed ID: 22951283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single cell mechanics: stress stiffening and kinematic hardening.
    Fernández P; Ott A
    Phys Rev Lett; 2008 Jun; 100(23):238102. PubMed ID: 18643547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical fluidity of fully suspended biological cells.
    Maloney JM; Lehnhardt E; Long AF; Van Vliet KJ
    Biophys J; 2013 Oct; 105(8):1767-77. PubMed ID: 24138852
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Geometric confinement influences cellular mechanical properties II -- intracellular variances in polarized cells.
    Su J; Brau RR; Jiang X; Whitesides GM; Lang MJ; So PT
    Mol Cell Biomech; 2007 Jun; 4(2):105-18. PubMed ID: 17937114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanics of single cells: rheology, time dependence, and fluctuations.
    Massiera G; Van Citters KM; Biancaniello PL; Crocker JC
    Biophys J; 2007 Nov; 93(10):3703-13. PubMed ID: 17693461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.