BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 28793415)

  • 1. Plasmon-Polariton Properties in Metallic Nanosphere Chains.
    Jacak WA; Krasnyj J; Chepok A
    Materials (Basel); 2015 Jun; 8(7):3910-3937. PubMed ID: 28793415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On Plasmon Polariton Propagation Along Metallic Nano-Chain.
    Jacak WA
    Plasmonics; 2013; 8(3):1317-1333. PubMed ID: 23956703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exact solution for velocity of plasmon-polariton in metallic nano-chain.
    Jacak WA
    Opt Express; 2014 Aug; 22(16):18958-65. PubMed ID: 25320982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Retardation effects on the dispersion and propagation of plasmons in metallic nanoparticle chains.
    Downing CA; Mariani E; Weick G
    J Phys Condens Matter; 2018 Jan; 30(2):025301. PubMed ID: 29176053
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct Observation of Plasmon Band Formation and Delocalization in Quasi-Infinite Nanoparticle Chains.
    Mayer M; Potapov PL; Pohl D; Steiner AM; Schultz J; Rellinghaus B; Lubk A; König TAF; Fery A
    Nano Lett; 2019 Jun; 19(6):3854-3862. PubMed ID: 31117756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial nonlocality effect on the surface plasmon propagation in plasmonic nanospheres waveguide.
    Mir M
    J Phys Condens Matter; 2023 Mar; 35(20):. PubMed ID: 36867884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A study of two-photon florescence in metallic nanoshells.
    Singh MR; Persaud PD; Yastrebov S
    Nanotechnology; 2020 Apr; 31(26):265203. PubMed ID: 32197263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Size-dependence of the Lorentz friction for surface plasmons in metallic nanospheres.
    Jacak WA
    Opt Express; 2015 Feb; 23(4):4472-81. PubMed ID: 25836484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fundamental limits to graphene plasmonics.
    Ni GX; McLeod AS; Sun Z; Wang L; Xiong L; Post KW; Sunku SS; Jiang BY; Hone J; Dean CR; Fogler MM; Basov DN
    Nature; 2018 May; 557(7706):530-533. PubMed ID: 29795255
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coupling between gap plasmon polariton and magnetic polariton in a metallic-dielectric multilayer structure.
    Chen J; Wang P; Zhang ZM; Lu Y; Ming H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 2):026603. PubMed ID: 21929124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface plasmon-polariton propagation in piecewise linear chains of composite nanospheres: the role of optical gain and chain layout.
    Udagedara IB; Rukhlenko ID; Premaratne M
    Opt Express; 2011 Oct; 19(21):19973-86. PubMed ID: 21997007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmon-Polariton Modes in Fullerenes.
    Matsko NL; Kruglov IA
    J Phys Chem Lett; 2021 Dec; 12(49):11873-11877. PubMed ID: 34874724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides.
    Nezhad M; Tetz K; Fainman Y
    Opt Express; 2004 Aug; 12(17):4072-9. PubMed ID: 19483948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photo-plasmonic effect as the hot electron generation mechanism.
    Akbari-Moghanjoughi M
    Sci Rep; 2023 Jan; 13(1):589. PubMed ID: 36631539
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmonic Surface Lattice Resonances: Theory and Computation.
    Cherqui C; Bourgeois MR; Wang D; Schatz GC
    Acc Chem Res; 2019 Sep; 52(9):2548-2558. PubMed ID: 31465203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spoof surface plasmon polaritons based on ultrathin corrugated metallic grooves at terahertz frequency.
    Liu Y; Yan J; Shao Y; Pan J; Zhang C; Hao Y; Han G
    Appl Opt; 2016 Mar; 55(7):1720-4. PubMed ID: 26974635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bulk and surface plasmon polariton excitation in RuO₂ for low-loss plasmonic applications in NIR.
    Wang L; Clavero C; Yang K; Radue E; Simons MT; Novikova I; Lukaszew RA
    Opt Express; 2012 Apr; 20(8):8618-28. PubMed ID: 22513571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tailoring radiative and non-radiative losses of thin nanostructured plasmonic waveguides.
    Billaudeau C; Collin S; Pardo F; Bardou N; Pelouard JL
    Opt Express; 2009 Mar; 17(5):3490-9. PubMed ID: 19259187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonlocal response of metallic nanospheres probed by light, electrons, and atoms.
    Christensen T; Yan W; Raza S; Jauho AP; Mortensen NA; Wubs M
    ACS Nano; 2014 Feb; 8(2):1745-58. PubMed ID: 24437380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep strong light-matter coupling in plasmonic nanoparticle crystals.
    Mueller NS; Okamura Y; Vieira BGM; Juergensen S; Lange H; Barros EB; Schulz F; Reich S
    Nature; 2020 Jul; 583(7818):780-784. PubMed ID: 32728238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.