These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 28793415)

  • 21. Radiation of the high-order plasmonic modes of large gold nanospheres excited by surface plasmon polaritons.
    Chen JD; Xiang J; Jiang S; Dai QF; Tie SL; Lan S
    Nanoscale; 2018 May; 10(19):9153-9163. PubMed ID: 29725675
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal.
    Ma W; Alonso-González P; Li S; Nikitin AY; Yuan J; Martín-Sánchez J; Taboada-Gutiérrez J; Amenabar I; Li P; Vélez S; Tollan C; Dai Z; Zhang Y; Sriram S; Kalantar-Zadeh K; Lee ST; Hillenbrand R; Bao Q
    Nature; 2018 Oct; 562(7728):557-562. PubMed ID: 30356185
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Plasmon-polariton transport in metal-nanoparticle chains embedded in a gain medium.
    Citrin DS
    Opt Lett; 2006 Jan; 31(1):98-100. PubMed ID: 16419890
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efficient Fizeau drag from Dirac electrons in monolayer graphene.
    Zhao W; Zhao S; Li H; Wang S; Wang S; Utama MIB; Kahn S; Jiang Y; Xiao X; Yoo S; Watanabe K; Taniguchi T; Zettl A; Wang F
    Nature; 2021 Jun; 594(7864):517-521. PubMed ID: 34163053
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Photo-thermal modulation of surface plasmon polariton propagation at telecommunication wavelengths.
    Kaya S; Weeber JC; Zacharatos F; Hassan K; Bernardin T; Cluzel B; Fatome J; Finot C
    Opt Express; 2013 Sep; 21(19):22269-84. PubMed ID: 24104119
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Apertureless near-field optical microscopy of metallic nanoparticles.
    Pack A; Grill W; Wannemacher R
    Ultramicroscopy; 2003; 94(2):109-23. PubMed ID: 12505760
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Observation of localized surface plasmons and hybridized surface plasmon polaritons on self-assembled two-dimensional nanocavities.
    Xiong Q; Wei J; Mahpeykar SM; Meng L; Wang X
    Opt Lett; 2016 Apr; 41(7):1506-9. PubMed ID: 27192273
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Intrinsically undamped plasmon modes in narrow electron bands.
    Lewandowski C; Levitov L
    Proc Natl Acad Sci U S A; 2019 Oct; 116(42):20869-20874. PubMed ID: 31562197
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Excitation of dark plasmons in metal nanoparticles by a localized emitter.
    Liu M; Lee TW; Gray SK; Guyot-Sionnest P; Pelton M
    Phys Rev Lett; 2009 Mar; 102(10):107401. PubMed ID: 19392157
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spectrally Enhancing Near-Field Radiative Transfer between Metallic Gratings by Exciting Magnetic Polaritons in Nanometric Vacuum Gaps.
    Yang Y; Wang L
    Phys Rev Lett; 2016 Jul; 117(4):044301. PubMed ID: 27494474
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Direct Observations of Surface Plasmon Polaritons in Highly Conductive Organic Thin Film.
    Yang J; Almossalami HA; Wang Z; Wu K; Wang C; Sun K; Yang YM; Ye H
    ACS Appl Mater Interfaces; 2019 Oct; 11(42):39132-39142. PubMed ID: 31429274
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Plasmons in nanoscale and atomic-scale systems.
    Nagao T; Han G; Hoang C; Wi JS; Pucci A; Weber D; Neubrech F; Silkin VM; Enders D; Saito O; Rana M
    Sci Technol Adv Mater; 2010 Oct; 11(5):054506. PubMed ID: 27877363
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Energy transport in metal nanoparticle chains via sub-radiant plasmon modes.
    Willingham B; Link S
    Opt Express; 2011 Mar; 19(7):6450-61. PubMed ID: 21451673
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multipole Radiations from Large Gold Nanospheres Excited by Evanescent Wave.
    Chen J; Xiang J; Jiang S; Dai Q; Tie S; Lan S
    Nanomaterials (Basel); 2019 Jan; 9(2):. PubMed ID: 30708976
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Integrated fiber-coupled launcher for slow plasmon-polariton waves.
    Della Valle G; Longhi S
    Opt Express; 2012 Jan; 20(3):3158-65. PubMed ID: 22330553
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Refractive index sensing with subradiant modes: a framework to reduce losses in plasmonic nanostructures.
    Gallinet B; Martin OJ
    ACS Nano; 2013 Aug; 7(8):6978-87. PubMed ID: 23869857
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Engineering plasmon dispersion relations: hybrid nanoparticle chain-substrate plasmon polaritons.
    Compaijen PJ; Malyshev VA; Knoester J
    Opt Express; 2015 Feb; 23(3):2280-92. PubMed ID: 25836096
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Suppression of radiative losses of surface polaritons on nanostructured thin metal films.
    Gérard D; Salomon L; de Fornel F; Zayats AV
    Opt Lett; 2005 Apr; 30(7):780-2. PubMed ID: 15832936
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural dispersion-based reduction of loss in epsilon-near-zero and surface plasmon polariton waves.
    Li Y; Liberal I; Engheta N
    Sci Adv; 2019 Oct; 5(10):eaav3764. PubMed ID: 31646172
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Plasmon Excitations in Mixed Metallic Nanoarrays.
    Conley KM; Nayyar N; Rossi TP; Kuisma M; Turkowski V; Puska MJ; Rahman TS
    ACS Nano; 2019 May; 13(5):5344-5355. PubMed ID: 30973699
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.