BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 28793443)

  • 1. Nano Sensing and Energy Conversion Using Surface Plasmon Resonance (SPR).
    Kim II; Kihm KD
    Materials (Basel); 2015 Jul; 8(7):4332-4343. PubMed ID: 28793443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature-Dependent Refractive Index Determination from Critical Angle Measurements:  Implications for Quantitative SPR Sensing.
    Grassi JH; Georgiadis RM
    Anal Chem; 1999 Oct; 71(19):4392-6. PubMed ID: 21662865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Absorption and related optical dispersion effects on the spectral response of a surface plasmon resonance sensor.
    Nakkach M; Lecaruyer P; Bardin F; Sakly J; Ben Lakhdar Z; Canva M
    Appl Opt; 2008 Nov; 47(33):6177-82. PubMed ID: 19023380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bio-Inspired Ultrathin Perfect Absorber for High-Performance Photothermal Conversion.
    Liao Q; Zhu K; Hao X; Wu C; Li J; Cheng H; Yan J; Jiang L; Qu L
    Adv Mater; 2024 Jun; 36(24):e2313366. PubMed ID: 38459762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental Investigation of the Dielectric Constants of Thin Noble Metallic Films Using a Surface Plasmon Resonance Sensor.
    Tao L; Deng S; Gao H; Lv H; Wen X; Li M
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32182920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Depolying Tunable Metal-Shell/Dielectric Core Nanorod Arrays as the Virtually Perfect Absorber in the Near-Infrared Regime.
    Chau YC; Chou Chao CT; Lim CM; Huang HJ; Chiang HP
    ACS Omega; 2018 Jul; 3(7):7508-7516. PubMed ID: 31458906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Near-infrared surface plasmon polariton dispersion control with hyperbolic metamaterials.
    Luk TS; Kim I; Campione S; Howell SW; Subramania GS; Grubbs RK; Brener I; Chen HT; Fan S; Sinclair MB
    Opt Express; 2013 May; 21(9):11107-14. PubMed ID: 23669967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmon mode manipulation based on multi-layer hyperbolic metamaterials.
    Mao Y; Wang J; Sun S; He M; Tian S; Liang E
    Opt Express; 2022 Jun; 30(13):22353-22363. PubMed ID: 36224934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Designed Broadband Absorber Based on ENZ Mode Incorporating Plasmonic Metasurfaces.
    Dang PT; Le KQ; Lee JH; Nguyen TK
    Micromachines (Basel); 2019 Oct; 10(10):. PubMed ID: 31590301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface Plasmon Resonance Characteristics of Optical Fiber Incorporated with Au Nano-Particles in Cladding Region.
    Ju S; Jeong S; Kim Y; Lee SH; Han WT
    J Nanosci Nanotechnol; 2016 Jun; 16(6):6308-12. PubMed ID: 27427708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hyperbolic-Metamaterials-Based SPR Temperature Sensor Enhanced by a Nanodiamond-PDMS Hybrid for High Sensitivity and Fast Response.
    Hu S; Chen J; Liang J; Luo J; Shi W; Yuan J; Chen Y; Chen L; Chen Z; Liu GS; Luo Y
    ACS Appl Mater Interfaces; 2022 Sep; 14(37):42412-42419. PubMed ID: 36070359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transmission surface-plasmon resonance (T-SPR) measurements for monitoring adsorption on ultrathin gold island films.
    Kalyuzhny G; Vaskevich A; Schneeweiss MA; Rubinstein I
    Chemistry; 2002 Sep; 8(17):3849-57. PubMed ID: 12203279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmonic Metamaterials for Nanochemistry and Sensing.
    Wang P; Nasir ME; Krasavin AV; Dickson W; Jiang Y; Zayats AV
    Acc Chem Res; 2019 Nov; 52(11):3018-3028. PubMed ID: 31680511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An absorption-based surface plasmon resonance sensor applied to sodium ion sensing based on an ion-selective optode membrane.
    Kurihara K; Nakamura K; Hirayama E; Suzuki K
    Anal Chem; 2002 Dec; 74(24):6323-33. PubMed ID: 12510755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gold-Film-Thickness Dependent SPR Refractive Index and Temperature Sensing with Hetero-Core Optical Fiber Structure.
    Zhang R; Pu S; Li X
    Sensors (Basel); 2019 Oct; 19(19):. PubMed ID: 31597310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Performance of wavelength modulation surface plasmon resonance biosensor].
    Luo YH; Xu MY; Chen XL; Tang JY; Wang F; Zhang YL; He YH; Chen Z
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 May; 34(5):1178-81. PubMed ID: 25095402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupling plasmon-waveguide resonance and multiple plasma modes in hyperbolic metamaterials for high-performance sensing.
    Wang H; Wang T; Yan R; Yue X; Wang L; Wang Y; Zhang J; Wang J
    Nanotechnology; 2022 Aug; 33(46):. PubMed ID: 35926439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface plasmon resonance sensing properties of a 3D nanostructure consisting of aligned nanohole and nanocone arrays.
    Najiminaini M; Ertorer E; Kaminska B; Mittler S; Carson JJ
    Analyst; 2014 Apr; 139(8):1876-82. PubMed ID: 24527489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance Improvement of Polymer Solar Cells by Surface-Energy-Induced Dual Plasmon Resonance.
    Yao M; Shen P; Liu Y; Chen B; Guo W; Ruan S; Shen L
    ACS Appl Mater Interfaces; 2016 Mar; 8(9):6183-9. PubMed ID: 26900763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrasensitive Biosensor with Hyperbolic Metamaterials Composed of Silver and Zinc Oxide.
    Chen S; Hu S; Wu Y; Deng D; Luo Y; Chen Z
    Nanomaterials (Basel); 2021 Aug; 11(9):. PubMed ID: 34578536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.