These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 28793473)

  • 1. Enhanced Synthesis of Carbon Nanomaterials Using Acoustically Excited Methane Diffusion Flames.
    Hou SS; Chen KM; Yang ZY; Lin TH
    Materials (Basel); 2015 Jul; 8(8):4805-4816. PubMed ID: 28793473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Acoustic Modulation and Mixed Fuel on Flame Synthesis of Carbon Nanomaterials in an Atmospheric Environment.
    Hu WC; Sari SK; Hou SS; Lin TH
    Materials (Basel); 2016 Nov; 9(11):. PubMed ID: 28774059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flame synthesis of carbon nano-onions enhanced by acoustic modulation.
    Chung DH; Lin TH; Hou SS
    Nanotechnology; 2010 Oct; 21(43):435604. PubMed ID: 20890015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis on controlling factors for the synthesis of carbon nanotubes and nano-onions in counterflow diffusion flames.
    Hu WC; Hou SS; Lin TH
    J Nanosci Nanotechnol; 2014 Jul; 14(7):5363-9. PubMed ID: 24758032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ethanol flame synthesis of carbon nanotubes in deficient oxygen environments.
    Hu WC; Lin TH
    Nanotechnology; 2016 Apr; 27(16):165602. PubMed ID: 26963760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Interplay between Whey Protein Fibrils with Carbon Nanotubes or Carbon Nano-Onions.
    Kang N; Hua J; Gao L; Zhang B; Pang J
    Materials (Basel); 2021 Jan; 14(3):. PubMed ID: 33525699
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Acoustic Excitation on the Combustion Instability of Hydrogen-Methane Lean Premixed Swirling Flames.
    Deng K; Zhong Y; Wang M; Zhong Y; Luo KH
    ACS Omega; 2020 Apr; 5(15):8744-8753. PubMed ID: 32337436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flame synthesis of carbon nanotubes in a rotating counterflow.
    Hou SS; Chung DH; Lin TH
    J Nanosci Nanotechnol; 2009 Aug; 9(8):4826-33. PubMed ID: 19928157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of morphology and crystallinity of CNTs in flame synthesis with one-dimensional reaction zone.
    Ibrahim MH; Hamzah N; Mohd Yusop MZ; Septiani NLW; Mohd Yasin MF
    Beilstein J Nanotechnol; 2023; 14():741-750. PubMed ID: 37377745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flame synthesis of carbon nano onions using liquefied petroleum gas without catalyst.
    Dhand V; Prasad JS; Rao MV; Bharadwaj S; Anjaneyulu Y; Jain PK
    Mater Sci Eng C Mater Biol Appl; 2013 Mar; 33(2):758-62. PubMed ID: 25427484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of trace hydrocarbons in flames using direct sampling mass spectrometry coupled with multilinear regression analysis.
    Puccio MA; Miller JH
    Anal Chem; 2010 Jun; 82(12):5160-8. PubMed ID: 20503984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Experimental Study on the Characteristics of Chemiluminescence in Coal Water Slurry Diffusion Flames Based on Hot Oxygen Burner Technology].
    Hu CH; Guo QH; Song XD; Gong Y; Yu GS
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Oct; 36(10):3127-33. PubMed ID: 30222256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temporally resolved two dimensional temperature field of acoustically excited swirling flames measured by mid-infrared direct absorption spectroscopy.
    Liu X; Wang G; Zheng J; Xu L; Wang S; Li L; Qi F
    Opt Express; 2018 Nov; 26(24):31983-31994. PubMed ID: 30650777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rational design and engineering of carbon nano-onions reinforced natural protein nanocomposite hydrogels for biomedical applications.
    Mamidi N; Villela Castrejón J; González-Ortiz A
    J Mech Behav Biomed Mater; 2020 Apr; 104():103696. PubMed ID: 32174438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical study of gas-phase interactions of phosphorus compounds with co-flow diffusion flames.
    Takahashi F; Katta VR; Linteris GT; Babushok VI
    Proc Combust Inst; 2019; 37():. PubMed ID: 31579396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective synthesis of turbostratic polyhedral carbon nano-onions by arc discharge in water.
    Alessandro F; Scarcello A; Basantes Valverde MD; Coello Fiallos DC; Osman SM; Cupolillo A; Arias M; Arias de Fuentes O; De Luca G; Aloise A; Curcio E; Nicotra G; Spinella C; Caputi LS
    Nanotechnology; 2018 Aug; 29(32):325601. PubMed ID: 29761791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-repetition-rate burst-mode-laser diagnostics of an unconfined lean premixed swirling flame under external acoustic excitation.
    Wang S; Liu X; Wang G; Xu L; Li L; Liu Y; Huang Z; Qi F
    Appl Opt; 2019 Apr; 58(10):C68-C78. PubMed ID: 31045033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitrogen-doped carbon nanotubes from amine flames.
    Liao L; Fang P; Pan C
    J Nanosci Nanotechnol; 2011 Feb; 11(2):1060-7. PubMed ID: 21456139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resonant excitation of precursor molecules in improving the particle crystallinity, growth rate and optical limiting performance of carbon nano-onions.
    Gao Y; Zhou YS; Park JB; Wang H; He XN; Luo HF; Jiang L; Lu YF
    Nanotechnology; 2011 Apr; 22(16):165604. PubMed ID: 21393817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth of carbon nanotubes at low powers by impedance-matched microwave plasma enhanced chemical vapor deposition method.
    Chen SY; Chang LW; Peng CW; Miao HY; Lue JT
    J Nanosci Nanotechnol; 2005 Nov; 5(11):1887-92. PubMed ID: 16433426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.