These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 28793559)
1. Effect of Heat Treatment Process on Microstructure and Fatigue Behavior of a Nickel-Base Superalloy. Zhang P; Zhu Q; Chen G; Qin H; Wang C Materials (Basel); 2015 Sep; 8(9):6179-6194. PubMed ID: 28793559 [TBL] [Abstract][Full Text] [Related]
2. The Hardness Evolution of Cast and the High-Cycle Fatigue Life Change of Wrought Ni-Base Superalloys after Additional Heat Treatment. Belan J; Kuchariková L; Tillová E; Matvija M; Uhríčik M Materials (Basel); 2021 Dec; 14(23):. PubMed ID: 34885582 [TBL] [Abstract][Full Text] [Related]
3. Tensile Deformation and Fracture Behaviors of a Nickel-Based Superalloy via In Situ Digital Image Correlation and Synchrotron Radiation X-ray Tomography. Zhu Q; Chen G; Wang C; Qin H; Zhang P Materials (Basel); 2019 Aug; 12(15):. PubMed ID: 31382406 [TBL] [Abstract][Full Text] [Related]
4. Grain Refinement of a Powder Nickel-Base Superalloy Using Hot Deformation and Slow-Cooling. Fan X; Guo Z; Wang X; Yang J; Zou J Materials (Basel); 2018 Oct; 11(10):. PubMed ID: 30322200 [TBL] [Abstract][Full Text] [Related]
5. Fatigue Behavior of the FGH96 Superalloy under High-Temperature Cyclic Loading. Li Z; Qin H; Xu K; Xie Z; Ji P; Jia M Materials (Basel); 2023 Aug; 16(17):. PubMed ID: 37687575 [TBL] [Abstract][Full Text] [Related]
6. Influence and Sensitivity of Temperature and Microstructure on the Fluctuation of Creep Properties in Ni-Base Superalloy. Yao Z; Zhou B; Yao K; Wang H; Dong J; Davey T Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33114398 [TBL] [Abstract][Full Text] [Related]
7. Microstructure and Low-Cycle Fatigue Behavior of Al-9Si-4Cu-0.4Mg-0.3Sc Alloy with Different Casting States. Wang G; Che X; Zhang Z; Zhang H; Zhang S; Li Z; Sun J Materials (Basel); 2020 Jan; 13(3):. PubMed ID: 32023948 [TBL] [Abstract][Full Text] [Related]
8. The Effect of the Cooling Rates on the Microstructure and High-Temperature Mechanical Properties of a Nickel-Based Single Crystal Superalloy. Wang XY; Li M; Wen ZX Materials (Basel); 2020 Sep; 13(19):. PubMed ID: 32987819 [TBL] [Abstract][Full Text] [Related]
9. Comparison in Deformation Behavior, Microstructure, and Failure Mechanism of Nickel Base Alloy 625 under Two Strain Rates. Liu M; Wang Q; Cai Y; Lu D; Wang T; Pei Y; Zhang H; Liu Y; Wang Q Materials (Basel); 2021 May; 14(10):. PubMed ID: 34070188 [TBL] [Abstract][Full Text] [Related]
10. Thermodynamic Entropy-Based Fatigue Life Assessment Method for Nickel-Based Superalloy GH4169 at Elevated Temperature Considering Cyclic Viscoplasticity. Ding S; Xia S; Li Z; Zhou H; Bao S; Li B; Li G Entropy (Basel); 2024 Apr; 26(5):. PubMed ID: 38785642 [TBL] [Abstract][Full Text] [Related]
11. Study on Microstructure and Fatigue Properties of FGH96 Nickel-Based Superalloy. Bai Y; Yang S; Zhu M; Fan C Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34771822 [TBL] [Abstract][Full Text] [Related]
12. Mapping the evolution of hierarchical microstructures in a Ni-based superalloy. Vogel F; Wanderka N; Balogh Z; Ibrahim M; Stender P; Schmitz G; Banhart J Nat Commun; 2013; 4():2955. PubMed ID: 24356413 [TBL] [Abstract][Full Text] [Related]
13. Study of Aging Temperature on the Thermal Compression Behaviors and Microstructure of a Novel Ni-Cr-Co-Based Superalloy. Cai H; Ma Z; Zhang J; Hu J; Qi L; Chen P; Luo Z; Zhou X; Li J; Wang H Materials (Basel); 2024 Jul; 17(14):. PubMed ID: 39063791 [TBL] [Abstract][Full Text] [Related]
14. Microstructural Degradation and Creep Property Damage of a Second-Generation Single Crystal Superalloy Caused by High Temperature Overheating. Guo X; He H; Chen F; Liu J; Li W; Zhao H Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837312 [TBL] [Abstract][Full Text] [Related]
15. Strain controlled fatigue response of large-scale perfect and defect nickel nanowires: A molecular dynamics study. Yedla N J Mol Graph Model; 2021 Jul; 106():107885. PubMed ID: 33984817 [TBL] [Abstract][Full Text] [Related]
16. Low-Cycle Fatigue Behavior of the Novel Steel and 30SiMn2MoV Steel at 700 °C. Zhao C; Zhang J; Fu J; Lian Y; Zhang Z; Zhang C; Huang J Materials (Basel); 2020 Dec; 13(24):. PubMed ID: 33339394 [TBL] [Abstract][Full Text] [Related]
17. Thermo-Mechanical Fatigue Behavior and Resultant Microstructure Evolution in Al-Si 319 and 356 Cast Alloys. Liu K; Wang S; Pan L; Chen XG Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676566 [TBL] [Abstract][Full Text] [Related]
18. Effects of the γ″-Ni Ling LS; Yin Z; Hu Z; Wang J; Sun BD Materials (Basel); 2019 Nov; 12(23):. PubMed ID: 31801273 [TBL] [Abstract][Full Text] [Related]
19. In-Situ Synchrotron HEXRD Study on the Micro-Stress Evolution Behavior of a Superalloy during Room-Temperature Compression. Wang H; Tong R; Liu G; Sha A; Song L; Zhang T Materials (Basel); 2023 May; 16(10):. PubMed ID: 37241383 [TBL] [Abstract][Full Text] [Related]
20. Mechanism of Precipitate Microstructure Affecting Fatigue Behavior of 7020 Aluminum Alloy. Shan Z; Liu S; Ye L; Li Y; He C; Chen J; Tang J; Deng Y; Zhang X Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32707847 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]