These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 28793585)
41. Influence of calcium chloride impregnation on the thermal and high-temperature carbonization properties of bamboo fiber. Cheng D; Li T; Smith G; Yang J; Hang C; Miao Z; Wu Z PLoS One; 2019; 14(2):e0212886. PubMed ID: 30817796 [TBL] [Abstract][Full Text] [Related]
42. Characterization of untreated and alkali treated new cellulosic fiber from an Areca palm leaf stalk as potential reinforcement in polymer composites. N S; I R; T R Carbohydr Polym; 2018 Sep; 195():566-575. PubMed ID: 29805013 [TBL] [Abstract][Full Text] [Related]
43. Properties of nonvolatile and antibacterial bioboard produced from bamboo macromolecules by hot pressing. Ge S; Wang L; Liu Z; Jiang S; Yang X; Yang W; Peng W; Cai T Saudi J Biol Sci; 2018 Mar; 25(3):474-478. PubMed ID: 29692650 [TBL] [Abstract][Full Text] [Related]
44. Properties of antibacterial bioboard from bamboo macromolecule by hot press. Wang L; Ge S; Liu Z; Zhou Y; Yang X; Yang W; Li D; Peng W Saudi J Biol Sci; 2018 Mar; 25(3):465-468. PubMed ID: 29686510 [TBL] [Abstract][Full Text] [Related]
45. Effects of One-Step Hot Oil Treatment on the Physical, Mechanical, and Surface Properties of Bamboo Scrimber. Yuan Z; Wu X; Wang X; Zhang X; Yuan T; Liu X; Li Y Molecules; 2020 Sep; 25(19):. PubMed ID: 33007924 [TBL] [Abstract][Full Text] [Related]
46. Influence of g-C3N4 nanosheets on thermal stability and mechanical properties of biopolymer electrolyte nanocomposite films: a novel investigation. Shi Y; Jiang S; Zhou K; Bao C; Yu B; Qian X; Wang B; Hong N; Wen P; Gui Z; Hu Y; Yuen RK ACS Appl Mater Interfaces; 2014 Jan; 6(1):429-37. PubMed ID: 24313710 [TBL] [Abstract][Full Text] [Related]
47. Enhancements in crystallinity, thermal stability, tensile modulus and strength of sisal fibres and their PP composites induced by the synergistic effects of alkali and high intensity ultrasound (HIU) treatments. Krishnaiah P; Ratnam CT; Manickam S Ultrason Sonochem; 2017 Jan; 34():729-742. PubMed ID: 27773300 [TBL] [Abstract][Full Text] [Related]
48. Mercerization Optimization of Bamboo (Bambusa vulgaris) Fiber-Reinforced Epoxy Composite Structures Using a Box-Behnken Design. Hassan MZ; Roslan SA; Sapuan SM; Rasid ZA; Mohd Nor AF; Md Daud MY; Dolah R; Mohamed Yusoff MZ Polymers (Basel); 2020 Jun; 12(6):. PubMed ID: 32560539 [TBL] [Abstract][Full Text] [Related]
49. Melt spinning of poly(lactic acid) and hydroxyapatite composite fibers: influence of the filler content on the fiber properties. Persson M; Lorite GS; Cho SW; Tuukkanen J; Skrifvars M ACS Appl Mater Interfaces; 2013 Aug; 5(15):6864-72. PubMed ID: 23848437 [TBL] [Abstract][Full Text] [Related]
50. Effects of magnesium carbonate concentration and lignin presence on properties of natural cellulosic Cissus quadrangularis fiber composites. Siva R; Valarmathi TN; Palanikumar K Int J Biol Macromol; 2020 Dec; 164():3611-3620. PubMed ID: 32877714 [TBL] [Abstract][Full Text] [Related]
51. Study on a Novel natural cellulosic fiber from Kigelia africana fruit: Characterization and analysis. Siva R; Valarmathi TN; Palanikumar K; Samrot AV Carbohydr Polym; 2020 Sep; 244():116494. PubMed ID: 32536404 [TBL] [Abstract][Full Text] [Related]
52. Determination of mechanical strength properties of hemp fibers using near-infrared fourier transform Raman microspectroscopy. Peetla P; Schenzel KC; Diepenbrock W Appl Spectrosc; 2006 Jun; 60(6):682-91. PubMed ID: 16808870 [TBL] [Abstract][Full Text] [Related]
53. Investigation of the effect of enzymatic and alkali treatments on the physico-chemical properties of Sambucus ebulus L. plant fiber. Eyupoglu S; Eyupoglu C; Merdan N Int J Biol Macromol; 2024 May; 266(Pt 2):130968. PubMed ID: 38521324 [TBL] [Abstract][Full Text] [Related]
54. Combined Chemical Modification of Bamboo Material Prepared Using Vinyl Acetate and Methyl Methacrylate: Dimensional Stability, Chemical Structure, and Dynamic Mechanical Properties. Huang S; Jiang Q; Yu B; Nie Y; Ma Z; Ma L Polymers (Basel); 2019 Oct; 11(10):. PubMed ID: 31614488 [TBL] [Abstract][Full Text] [Related]
55. Functionalization of bamboo fibers with lawsone dye (Lawsonia inermis) to produce bioinspired hybrid color composite with antibacterial activity. Szadkowski B; Marzec A; Kuśmierek M; Piotrowska M; Moszyński D Int J Biol Macromol; 2024 Feb; 259(Pt 1):129178. PubMed ID: 38184044 [TBL] [Abstract][Full Text] [Related]
56. Enhancing Thermal and Mechanical Properties of Ramie Fiber via Impregnation by Lignin-Based Polyurethane Resin. Handika SO; Lubis MAR; Sari RK; Laksana RPB; Antov P; Savov V; Gajtanska M; Iswanto AH Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832252 [TBL] [Abstract][Full Text] [Related]
57. Study on the Properties of Transparent Bamboo Prepared by Epoxy Resin Impregnation. Wu Y; Wang Y; Yang F; Wang J; Wang X Polymers (Basel); 2020 Apr; 12(4):. PubMed ID: 32283636 [TBL] [Abstract][Full Text] [Related]
58. Extraction and characterization of a novel cellulosic fiber derived from the bark of Rosa hybrida plant. Shibly MAH; Islam MI; Rahat MNH; Billah MM; Rahman MM; Bashar MS; Abdul B; Alorfi HS Int J Biol Macromol; 2024 Feb; 257(Pt 1):128446. PubMed ID: 38029899 [TBL] [Abstract][Full Text] [Related]
59. Utilization of Waste Bamboo Fibers in Thermoplastic Composites: Influence of the Chemical Composition and Thermal Decomposition Behavior. Yeh CH; Yang TC Polymers (Basel); 2020 Mar; 12(3):. PubMed ID: 32168761 [TBL] [Abstract][Full Text] [Related]
60. Examining the physico-chemical, structural and thermo-mechanical properties of naturally occurring Acacia pennata fibres treated with KMnO Sheeba KRJ; Priya RK; Arunachalam KP; Shobana S; Avudaiappan S; Flores ES Sci Rep; 2023 Nov; 13(1):20643. PubMed ID: 38001118 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]