These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 28793652)
1. Enhanced Stability of Calcium Sulfate Scaffolds with 45S5 Bioglass for Bone Repair. Shuai C; Zhou J; Wu P; Gao C; Feng P; Xiao T; Deng Y; Peng S Materials (Basel); 2015 Nov; 8(11):7498-7510. PubMed ID: 28793652 [TBL] [Abstract][Full Text] [Related]
2. Incorporation of 45S5 bioglass via sol-gel in β-TCP scaffolds: Bioactivity and antimicrobial activity evaluation. Spirandeli BR; Ribas RG; Amaral SS; Martins EF; Esposito E; Vasconcellos LMR; Campos TMB; Thim GP; Trichês ES Mater Sci Eng C Mater Biol Appl; 2021 Dec; 131():112453. PubMed ID: 34857256 [TBL] [Abstract][Full Text] [Related]
3. Liquid phase sintered ceramic bone scaffolds by combined laser and furnace. Feng P; Deng Y; Duan S; Gao C; Shuai C; Peng S Int J Mol Sci; 2014 Aug; 15(8):14574-90. PubMed ID: 25196598 [TBL] [Abstract][Full Text] [Related]
4. In vitro and in vivo bone formation potential of surface calcium phosphate-coated polycaprolactone and polycaprolactone/bioactive glass composite scaffolds. Poh PSP; Hutmacher DW; Holzapfel BM; Solanki AK; Stevens MM; Woodruff MA Acta Biomater; 2016 Jan; 30():319-333. PubMed ID: 26563472 [TBL] [Abstract][Full Text] [Related]
5. Preparation and Characterization of 3D Printed Porous 45S5 Bioglass Bioceramic for Bone Tissue Engineering Application. Dong Z; Gong J; Zhang H; Ni Y; Cheng L; Song Q; Tang L; Xing F; Liu M; Zhou C Int J Bioprint; 2022; 8(4):613. PubMed ID: 36404785 [TBL] [Abstract][Full Text] [Related]
6. Porous 45S5 Bioglass®-based scaffolds using stereolithography: Effect of partial pre-sintering on structural and mechanical properties of scaffolds. Thavornyutikarn B; Tesavibul P; Sitthiseripratip K; Chatarapanich N; Feltis B; Wright PFA; Turney TW Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():1281-1288. PubMed ID: 28415417 [TBL] [Abstract][Full Text] [Related]
7. Enhancing the mechanical and in vitro performance of robocast bioglass scaffolds by polymeric coatings: Effect of polymer composition. Motealleh A; Eqtesadi S; Pajares A; Miranda P J Mech Behav Biomed Mater; 2018 Aug; 84():35-45. PubMed ID: 29729579 [TBL] [Abstract][Full Text] [Related]
8. [Application of mechanically reinforced 45S5 Bioglass Chen L; Yang X; Ma R; Zhu L Zhejiang Da Xue Xue Bao Yi Xue Ban; 2017 May; 46(6):600-608. PubMed ID: 29658662 [TBL] [Abstract][Full Text] [Related]
9. Multi-functional P(3HB) microsphere/45S5 Bioglass-based composite scaffolds for bone tissue engineering. Francis L; Meng D; Knowles JC; Roy I; Boccaccini AR Acta Biomater; 2010 Jul; 6(7):2773-86. PubMed ID: 20056174 [TBL] [Abstract][Full Text] [Related]
10. 45S5 Bioglass-derived glass-ceramic scaffolds for bone tissue engineering. Chen QZ; Thompson ID; Boccaccini AR Biomaterials; 2006 Apr; 27(11):2414-25. PubMed ID: 16336997 [TBL] [Abstract][Full Text] [Related]
11. The effect of crystallization of bioactive bioglass 45S5 on apatite formation and degradation. Plewinski M; Schickle K; Lindner M; Kirsten A; Weber M; Fischer H Dent Mater; 2013 Dec; 29(12):1256-64. PubMed ID: 24157243 [TBL] [Abstract][Full Text] [Related]
12. Antibacterial 45S5 Bioglass®-based scaffolds reinforced with genipin cross-linked gelatin for bone tissue engineering. Li W; Wang H; Ding Y; Scheithauer EC; Goudouri OM; Grünewald A; Detsch R; Agarwal S; Boccaccini AR J Mater Chem B; 2015 Apr; 3(16):3367-3378. PubMed ID: 32262331 [TBL] [Abstract][Full Text] [Related]
13. The use of carbon nanotubes to reinforce 45S5 bioglass-based scaffolds for tissue engineering applications. Touri R; Moztarzadeh F; Sadeghian Z; Bizari D; Tahriri M; Mozafari M Biomed Res Int; 2013; 2013():465086. PubMed ID: 24294609 [TBL] [Abstract][Full Text] [Related]
15. Fabrication and characterization of sol-gel derived 45S5 Bioglass®-ceramic scaffolds. Chen QZ; Thouas GA Acta Biomater; 2011 Oct; 7(10):3616-26. PubMed ID: 21689791 [TBL] [Abstract][Full Text] [Related]
16. Bioactive Glasses Containing Strontium or Magnesium Ions to Enhance the Biological Response in Bone Regeneration. Gavinho SR; Pádua AS; Holz LIV; Sá-Nogueira I; Silva JC; Borges JP; Valente MA; Graça MPF Nanomaterials (Basel); 2023 Oct; 13(19):. PubMed ID: 37836358 [TBL] [Abstract][Full Text] [Related]
17. Systematic evaluation of the osteogenic capacity of low-melting bioactive glass-reinforced 45S5 Bioglass porous scaffolds in rabbit femoral defects. Zhang L; Ke X; Lin L; Xiao J; Yang X; Wang J; Yang G; Xu S; Gou Z; Shi Z Biomed Mater; 2017 Jun; 12(3):035010. PubMed ID: 28589920 [TBL] [Abstract][Full Text] [Related]
18. Study of the mechanical stability and bioactivity of Bioglass(®) based glass-ceramic scaffolds produced via powder metallurgy-inspired technology. Boccardi E; Melli V; Catignoli G; Altomare L; Jahromi MT; Cerruti M; Lefebvre LP; De Nardo L Biomed Mater; 2016 Feb; 11(1):015005. PubMed ID: 26836444 [TBL] [Abstract][Full Text] [Related]
19. Bioglass/carbonate apatite/collagen composite scaffold dissolution products promote human osteoblast differentiation. Ferreira SA; Young G; Jones JR; Rankin S Mater Sci Eng C Mater Biol Appl; 2021 Jan; 118():111393. PubMed ID: 33254998 [TBL] [Abstract][Full Text] [Related]
20. Role of phase separation on the biological performance of 45S5 Bioglass Kowal TJ; Golovchak R; Chokshi T; Harms J; Thamma U; Jain H; Falk MM J Mater Sci Mater Med; 2017 Sep; 28(10):161. PubMed ID: 28905286 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]