These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 28793661)

  • 1. Influence of Residual Stress Field on the Fatigue Crack Propagation in Prestressing Steel Wires.
    Toribio J; Matos JC; González B; Escuadra J
    Materials (Basel); 2015 Nov; 8(11):7589-7597. PubMed ID: 28793661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Corrosion-Fatigue Crack Growth in Plates: A Model Based on the Paris Law.
    Toribio J; Matos JC; González B
    Materials (Basel); 2017 Apr; 10(4):. PubMed ID: 28772798
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Residual Stresses on Fatigue Crack Growth: A Numerical Study Based on Cumulative Plastic Strain at the Crack Tip.
    Neto DM; Borges MF; Sérgio ER; Antunes FV
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fatigue Crack Propagation Prediction of Corroded Steel Plate Strengthened with Carbon Fiber Reinforced Polymer (CFRP) Plates.
    Li A; Wang L; Xu S
    Polymers (Basel); 2022 Nov; 14(21):. PubMed ID: 36365730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High compressive pre-strains reduce the bending fatigue life of nitinol wire.
    Gupta S; Pelton AR; Weaver JD; Gong XY; Nagaraja S
    J Mech Behav Biomed Mater; 2015 Apr; 44():96-108. PubMed ID: 25625888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Descriptions of crack growth behaviors in glass-ZrO2 bilayers under thermal residual stresses.
    Belli R; Wendler M; Zorzin JI; Petschelt A; Tanaka CB; Meira J; Lohbauer U
    Dent Mater; 2016 Sep; 32(9):1165-76. PubMed ID: 27424270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The interaction of fatigue cracks with a residual stress field using thermoelastic stress analysis and synchrotron X-ray diffraction experiments.
    Amjad K; Asquith D; Patterson EA; Sebastian CM; Wang WC
    R Soc Open Sci; 2017 Nov; 4(11):171100. PubMed ID: 29291095
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of Fatigue Crack Paths in Cold Drawn Pearlitic Steel.
    Toribio J; González B; Matos JC
    Materials (Basel); 2015 Nov; 8(11):7439-7446. PubMed ID: 28793647
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fatigue Crack Growth Analysis under Constant Amplitude Loading Using Finite Element Method.
    Alshoaibi AM
    Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Notch Effects on the Stress Intensity Factor and on the Fatigue Crack Path for Eccentric Circular Internal Cracks in Elliptically Notched Round Bars under Tensile Loading.
    Toribio J; González B; Matos JC; González I
    Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elasto-Plastic Fracture Mechanics Analysis of the Effect of Shot Peening on 300M Steel.
    Hou S; Cai Z; Zhu Y; Zhao Q; Chen Y; Gao H; Wang H; Li J
    Materials (Basel); 2021 Jun; 14(13):. PubMed ID: 34201930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fatigue Crack Propagation of Corroded High-Strength Steel Wires Using the XFEM and the EIFS.
    Zhu J; Jie Z; Chen C; Zheng H; Wang W
    Materials (Basel); 2023 Jun; 16(13):. PubMed ID: 37445051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cyclic Deformation Induced Residual Stress Evolution and 3D Short Fatigue Crack Growth Investigated by Advanced Synchrotron Tomography Techniques.
    Dönges B; Syha M; Hüsecken AK; Pietsch U; Ludwig W; Krupp U; Christ HJ
    Materials (Basel); 2021 Mar; 14(6):. PubMed ID: 33810145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fatigue Crack Growth Behavior of the MIG Welded Joint of 06Cr19Ni10 Stainless Steel.
    Tang L; Qian C; Ince A; Zheng J; Li H; Han Z
    Materials (Basel); 2018 Aug; 11(8):. PubMed ID: 30072599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stress Intensity Factor (SIF) Solutions and Fatigue Crack Paths in Eccentric Circumferentially Cracked Round Bar (CCRB) in Tension.
    Toribio J; Matos JC; González B
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical Analysis of Fatigue Crack Growth Path and Life Predictions for Linear Elastic Material.
    Alshoaibi AM; Fageehi YA
    Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32751568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Loading Frequency Ratio on Multiaxial Asynchronous Fatigue Failure of 30CrMnSiA Steel.
    Liu T; Qi X; Shi X; Gao L; Zhang T; Zhang J
    Materials (Basel); 2021 Jul; 14(14):. PubMed ID: 34300882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical simulation and experimental verification of fatigue crack propagation in high-strength bolts based on fracture mechanics.
    Zhang P; Li J; Zhao Y; Li J
    Sci Prog; 2023; 106(4):368504231211660. PubMed ID: 38058131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Residual Stress Induced by Different Cooling Methods in Heat Treatment on the Fatigue Crack Propagation Behaviour of GH4169 Disc.
    Fan M; Chen C; Xuan H; Qin H; Qu M; Shi S; Bi Z; Hong W
    Materials (Basel); 2022 Jul; 15(15):. PubMed ID: 35955161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Al⁻Zn Alloy Coating on Corrosion Fatigue Behavior of X80 Riser Steel.
    Han Z; Huang X; Yang Z
    Materials (Basel); 2019 May; 12(9):. PubMed ID: 31075918
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.