These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 28793711)

  • 1. Microstructural Changes Due to Alkali-Silica Reaction during Standard Mortar Test.
    Shin JH; Struble LJ; Kirkpatrick RJ
    Materials (Basel); 2015 Dec; 8(12):8292-8303. PubMed ID: 28793711
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potential of Alkali-Silica Reactivity of Unexplored Local Aggregates as per ASTM C1260.
    Abbas S; Hussain I; Aslam F; Ahmed A; Gillani SAA; Shabbir A; Deifalla AF
    Materials (Basel); 2022 Sep; 15(19):. PubMed ID: 36233969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microstructure and Degradation of Mortar Containing Waste Glass Aggregate as Evaluated by Various Microscopic Techniques.
    Czapik P
    Materials (Basel); 2020 May; 13(9):. PubMed ID: 32397524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Semi-continuous ultrasonic sounding and changes of ultrasonic signal characteristics as a sensitive tool for the evaluation of ongoing microstructural changes of experimental mortar bars tested for their ASR potential.
    Lokajíček T; Kuchařová A; Petružálek M; Šachlová Š; Svitek T; Přikryl R
    Ultrasonics; 2016 Sep; 71():40-50. PubMed ID: 27268163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recycled Untreated Rubber Waste for Controlling the Alkali-Silica Reaction in Concrete.
    Abbas S; Ahmed A; Waheed A; Abbass W; Yousaf M; Shaukat S; Alabduljabbar H; Awad YA
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential of Waste Marble Sludge for Repressing Alkali-Silica Reaction in Concrete with Reactive Aggregates.
    Ahmed A; Abbas S; Abbass W; Waheed A; Razzaq A; Ali E; Deifalla AF
    Materials (Basel); 2022 Jun; 15(11):. PubMed ID: 35683260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laser scanning confocal microscopy for in situ monitoring of alkali-silica reaction.
    Collins CL; Ideker JH; Kurtis KE
    J Microsc; 2004 Feb; 213(2):149-57. PubMed ID: 14731298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of Alkali-Silica Reaction Potential in Aggregates from Iran and Australia Using Thin-Section Petrography and Expansion Testing.
    Kazemi P; Nikudel MR; Khamehchiyan M; Giri P; Taheri S; Clark SM
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of Calcination Temperature and Amount of Low-Grade Clay Replacement on Mitigation of the Alkali-Silica Reaction.
    Jóźwiak-Niedźwiedzka D; Jaskulski R; Dziedzic K; Antolik A; Dąbrowski M
    Materials (Basel); 2023 Apr; 16(8):. PubMed ID: 37110047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High resolution transmission soft X-ray microscopy of deterioration products developed in large concrete dams.
    Kurtis KE; Monteiro PJ; Brown JT; Meyer-Ilse W
    J Microsc; 1999 Dec; 196 (Pt 3)():288-98. PubMed ID: 10594769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Initial Characteristics of Alkali-Silica Reaction Products in Mortar Containing Low-Purity Calcined Clay.
    Jóźwiak-Niedźwiedzka D; Jaskulski R; Dziedzic K; Brachaczek A; Jarząbek DM
    Materials (Basel); 2024 May; 17(10):. PubMed ID: 38793274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of Aggregate Grain Size on ASR-Induced Expansion.
    Zapała-Sławeta J
    Materials (Basel); 2023 Dec; 16(24):. PubMed ID: 38138653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alkali-silica reactions of mortars produced by using waste glass as fine aggregate and admixtures such as fly ash and Li2CO3.
    Topçu IB; Boğa AR; Bilir T
    Waste Manag; 2008; 28(5):878-84. PubMed ID: 17570652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quartzite Mining Waste: Diagnosis of ASR Alkali-Silica Reaction in Mortars and Portland Cement Concrete.
    Francklin I; Ribeiro RP; Corrêa FA
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Experimental Study on Water Permeability of Architectural Mortar Using Waste Glass as Fine Aggregate.
    Jing G; Huang G; Zhu W
    Materials (Basel); 2020 Mar; 13(5):. PubMed ID: 32131437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degradation of Glaukonite Sandstone as a Result of Alkali-Silica Reactions in Cement Mortar.
    Czapik P
    Materials (Basel); 2018 May; 11(6):. PubMed ID: 29848958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alkali-silica Reaction Elimination Potential of High-Performance Concrete Containing Glass Powder.
    Mariaková D; Mocová KA; Fořtová K; Pavlů T; Hájek P
    Materials (Basel); 2022 Sep; 15(19):. PubMed ID: 36233915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibitory Effect of Waste Glass Powder on ASR Expansion Induced by Waste Glass Aggregate.
    Liu S; Wang S; Tang W; Hu N; Wei J
    Materials (Basel); 2015 Oct; 8(10):6849-6862. PubMed ID: 28793603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Damage Generated and Propagated by the AAR Reactive Aggregate from Kingston, Ontario, Canada.
    Trottier C; Sanchez LFM
    Materials (Basel); 2023 Dec; 17(1):. PubMed ID: 38204020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expansion of Dolomitic Rocks in TMAH and NaOH Solutions and Its Root Causes.
    Yuan H; Deng M; Chen B; Chen W; Mao Z
    Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31936618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.