BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 28793725)

  • 1. Polyols from Microwave Liquefied Bagasse and Its Application to Rigid Polyurethane Foam.
    Xie J; Zhai X; Hse CY; Shupe TF; Pan H
    Materials (Basel); 2015 Dec; 8(12):8496-8509. PubMed ID: 28793725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Producing Lignin-Based Polyols through Microwave-Assisted Liquefaction for Rigid Polyurethane Foam Production.
    Xue BL; Wen JL; Sun RC
    Materials (Basel); 2015 Feb; 8(2):586-599. PubMed ID: 28787959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atmospheric pressure liquefaction of dried distillers grains (DDG) and making polyurethane foams from liquefied DDG.
    Yu F; Le Z; Chen P; Liu Y; Lin X; Ruan R
    Appl Biochem Biotechnol; 2008 Mar; 148(1-3):235-43. PubMed ID: 18418755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acid-catalyzed liquefaction of bagasse in the presence of polyhydric alcohol.
    Zhang H; Luo J; Li Y; Guo H; Xiong L; Chen X
    Appl Biochem Biotechnol; 2013 Aug; 170(7):1780-91. PubMed ID: 23740473
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bio-Degradable Polyurethane Foams Produced by Liquefied Polyol from Wheat Straw Biomass.
    Serrano L; Rincón E; García A; Rodríguez J; Briones R
    Polymers (Basel); 2020 Nov; 12(11):. PubMed ID: 33182792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of Polyurethane Adhesives from Crude and Purified Liquefied Wood Sawdust.
    Jiang W; Hosseinpourpia R; Biziks V; Ahmed SA; Militz H; Adamopoulos S
    Polymers (Basel); 2021 Sep; 13(19):. PubMed ID: 34641084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microwave-Assisted Two-Step Liquefaction of Acetone-Soluble Lignin of Silvergrass Saccharification Residue for Production of Biopolyol and Biopolyurethane.
    Tran MH; Yu JH; Lee EY
    Polymers (Basel); 2021 May; 13(9):. PubMed ID: 34066548
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical properties of polyurethane foams prepared from liquefied corn stover with PAPI.
    Wang T; Zhang L; Li D; Yin J; Wu S; Mao Z
    Bioresour Technol; 2008 May; 99(7):2265-8. PubMed ID: 17604162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flexible Polyurethane Foams from Epoxidized Vegetable Oils and a Bio-Based Diisocyanate.
    Cifarelli A; Boggioni L; Vignali A; Tritto I; Bertini F; Losio S
    Polymers (Basel); 2021 Feb; 13(4):. PubMed ID: 33670627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Liquefaction of Peanut Shells with Cation Exchange Resin and Sulfuric Acid as Dual Catalyst for the Subsequent Synthesis of Rigid Polyurethane Foam.
    Zhang Q; Chen W; Qu G; Lin X; Han D; Yan X; Zhang H
    Polymers (Basel); 2019 Jun; 11(6):. PubMed ID: 31167437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Strength and Low-Cost Biobased Polyurethane Foam Composites Enhanced by Poplar Wood Powder Liquefaction.
    Yang W; Han Y; Zhang W; Zhang D
    Polymers (Basel); 2021 Sep; 13(17):. PubMed ID: 34503039
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of Different Epoxidation Approaches of Tall Oil Fatty Acids on Rigid Polyurethane Foam Thermal Insulation.
    Abolins A; Pomilovskis R; Vanags E; Mierina I; Michalowski S; Fridrihsone A; Kirpluks M
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33668608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and properties of polyurethane foams prepared from heavy oil modified by polyols with 4,4'-methylene-diphenylene isocyanate (MDI).
    Zou X; Qin T; Wang Y; Huang L; Han Y; Li Y
    Bioresour Technol; 2012 Jun; 114():654-7. PubMed ID: 22497705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Influence of Neem Oil and Its Glyceride on the Structure and Characterization of Castor Oil-Based Polyurethane Foam.
    Liao YH; Su YL; Chen YC
    Polymers (Basel); 2021 Jun; 13(12):. PubMed ID: 34205593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-step sequential liquefaction of lignocellulosic biomass by crude glycerol for the production of polyols and polyurethane foams.
    Hu S; Li Y
    Bioresour Technol; 2014 Jun; 161():410-5. PubMed ID: 24727702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recovery of Green Polyols from Rigid Polyurethane Waste by Catalytic Depolymerization.
    Miguel-Fernández R; Amundarain I; Asueta A; García-Fernández S; Arnaiz S; Miazza NL; Montón E; Rodríguez-García B; Bianca-Benchea E
    Polymers (Basel); 2022 Jul; 14(14):. PubMed ID: 35890711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bio-Based Polyurethane Networks Derived from Liquefied Sawdust.
    Gosz K; Tercjak A; Olszewski A; Haponiuk J; Piszczyk Ł
    Materials (Basel); 2021 Jun; 14(11):. PubMed ID: 34200442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of New Eco-Polyols Based on PLA Waste on the Basic Properties of Rigid Polyurethane and Polyurethane/Polyisocyanurate Foams.
    Borowicz M; Isbrandt M; Paciorek-Sadowska J
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Valorisation of crude glycerol in the production of liquefied lignin bio-polyols for polyurethane formulations.
    Hernández-Ramos F; Alriols MG; Antxustegi MM; Labidi J; Erdocia X
    Int J Biol Macromol; 2023 Aug; 247():125855. PubMed ID: 37460069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organosolv liquefaction of sugarcane bagasse catalyzed by acidic ionic liquids.
    Chen Z; Long J
    Bioresour Technol; 2016 Aug; 214():16-23. PubMed ID: 27115746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.