These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 28793758)

  • 1. Identifying Key Structural Features of IrO
    Willinger E; Massué C; Schlögl R; Willinger MG
    J Am Chem Soc; 2017 Aug; 139(34):12093-12101. PubMed ID: 28793758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural impacts on the degradation behaviors of Ir-based electrocatalysts during water oxidation in acid.
    Li M; Qi J; Zeng H; Chen J; Liu Z; Gu L; Wang J; Zhang Y; Wang M; Zhang Y; Lu X; Yang C
    J Colloid Interface Sci; 2024 Jun; 674():108-117. PubMed ID: 38917711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Achieving Active and Stable Amorphous Ir
    Ma CL; Yang XR; Wang ZQ; Sun W; Zhu L; Cao LM; Gong XQ; Yang J
    ACS Appl Mater Interfaces; 2022 Jun; 14(25):28706-28715. PubMed ID: 35695736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lithium-Directed Transformation of Amorphous Iridium (Oxy)hydroxides To Produce Active Water Oxidation Catalysts.
    Ruiz Esquius J; Morgan DJ; Algara Siller G; Gianolio D; Aramini M; Lahn L; Kasian O; Kondrat SA; Schlögl R; Hutchings GJ; Arrigo R; Freakley SJ
    J Am Chem Soc; 2023 Mar; 145(11):6398-6409. PubMed ID: 36892000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomistic Texture of Amorphous Manganese Oxides for Electrochemical Water Splitting Revealed by Ab Initio Calculations Combined with X-ray Spectroscopy.
    Mattioli G; Zaharieva I; Dau H; Guidoni L
    J Am Chem Soc; 2015 Aug; 137(32):10254-67. PubMed ID: 26226190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimizing Edge Active Sites via Intrinsic In-Plane Iridium Deficiency in Layered Iridium Oxides for Oxygen Evolution Electrocatalysis.
    Wang L; Du R; Liang X; Zou Y; Zhao X; Chen H; Zou X
    Adv Mater; 2024 Apr; 36(16):e2312608. PubMed ID: 38195802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microwave-Assisted Synthesis of Stable and Highly Active Ir Oxohydroxides for Electrochemical Oxidation of Water.
    Massué C; Huang X; Tarasov A; Ranjan C; Cap S; Schlögl R
    ChemSusChem; 2017 May; 10(9):1958-1968. PubMed ID: 28164470
    [TBL] [Abstract][Full Text] [Related]  

  • 8. IrO
    Xu J; Jin H; Lu T; Li J; Liu Y; Davey K; Zheng Y; Qiao SZ
    Sci Adv; 2023 Jun; 9(25):eadh1718. PubMed ID: 37352343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Breaking Long-Range Order in Iridium Oxide by Alkali Ion for Efficient Water Oxidation.
    Gao J; Xu CQ; Hung SF; Liu W; Cai W; Zeng Z; Jia C; Chen HM; Xiao H; Li J; Huang Y; Liu B
    J Am Chem Soc; 2019 Feb; 141(7):3014-3023. PubMed ID: 30673269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Performance Supported Iridium Oxohydroxide Water Oxidation Electrocatalysts.
    Massué C; Pfeifer V; Huang X; Noack J; Tarasov A; Cap S; Schlögl R
    ChemSusChem; 2017 May; 10(9):1943-1957. PubMed ID: 28164475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Importance of Surface IrO
    Escudero-Escribano M; Pedersen AF; Paoli EA; Frydendal R; Friebel D; Malacrida P; Rossmeisl J; Stephens IEL; Chorkendorff I
    J Phys Chem B; 2018 Jan; 122(2):947-955. PubMed ID: 29045788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomistic structure of cobalt-phosphate nanoparticles for catalytic water oxidation.
    Hu XL; Piccinin S; Laio A; Fabris S
    ACS Nano; 2012 Dec; 6(12):10497-504. PubMed ID: 23145574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanistic Study of IrO
    Zagalskaya A; Alexandrov V
    J Phys Chem Lett; 2020 Apr; 11(7):2695-2700. PubMed ID: 32188249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The electronic structure of iridium oxide electrodes active in water splitting.
    Pfeifer V; Jones TE; Velasco Vélez JJ; Massué C; Greiner MT; Arrigo R; Teschner D; Girgsdies F; Scherzer M; Allan J; Hashagen M; Weinberg G; Piccinin S; Hävecker M; Knop-Gericke A; Schlögl R
    Phys Chem Chem Phys; 2016 Jan; 18(4):2292-6. PubMed ID: 26700139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of highly active Fe sites in (Ni,Fe)OOH for electrocatalytic water splitting.
    Friebel D; Louie MW; Bajdich M; Sanwald KE; Cai Y; Wise AM; Cheng MJ; Sokaras D; Weng TC; Alonso-Mori R; Davis RC; Bargar JR; Nørskov JK; Nilsson A; Bell AT
    J Am Chem Soc; 2015 Jan; 137(3):1305-13. PubMed ID: 25562406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface Electron-Hole Rich Species Active in the Electrocatalytic Water Oxidation.
    Velasco-Vélez JJ; Carbonio EA; Chuang CH; Hsu CJ; Lee JF; Arrigo R; Hävecker M; Wang R; Plodinec M; Wang FR; Centeno A; Zurutuza A; Falling LJ; Mom RV; Hofmann S; Schlögl R; Knop-Gericke A; Jones TE
    J Am Chem Soc; 2021 Aug; 143(32):12524-12534. PubMed ID: 34355571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atomically-thin two-dimensional sheets for understanding active sites in catalysis.
    Sun Y; Gao S; Lei F; Xie Y
    Chem Soc Rev; 2015 Feb; 44(3):623-36. PubMed ID: 25382246
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and Activities of Rutile IrO2 and RuO2 Nanoparticles for Oxygen Evolution in Acid and Alkaline Solutions.
    Lee Y; Suntivich J; May KJ; Perry EE; Shao-Horn Y
    J Phys Chem Lett; 2012 Feb; 3(3):399-404. PubMed ID: 26285858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uncovering the Nature of Active Sites during Electrocatalytic Reactions by
    Cao L; Liu X; Shen X; Wu D; Yao T
    Acc Chem Res; 2022 Sep; 55(18):2594-2603. PubMed ID: 36044043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atomic scale analysis of the enhanced electro- and photo-catalytic activity in high-index faceted porous NiO nanowires.
    Shen M; Han A; Wang X; Ro YG; Kargar A; Lin Y; Guo H; Du P; Jiang J; Zhang J; Dayeh SA; Xiang B
    Sci Rep; 2015 Feb; 5():8557. PubMed ID: 25707903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.