These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
292 related articles for article (PubMed ID: 28793853)
1. Equine skeletal muscle adaptations to exercise and training: evidence of differential regulation of autophagosomal and mitochondrial components. Bryan K; McGivney BA; Farries G; McGettigan PA; McGivney CL; Gough KF; MacHugh DE; Katz LM; Hill EW BMC Genomics; 2017 Aug; 18(1):595. PubMed ID: 28793853 [TBL] [Abstract][Full Text] [Related]
2. Transcriptional adaptations following exercise in thoroughbred horse skeletal muscle highlights molecular mechanisms that lead to muscle hypertrophy. McGivney BA; Eivers SS; MacHugh DE; MacLeod JN; O'Gorman GM; Park SD; Katz LM; Hill EW BMC Genomics; 2009 Dec; 10():638. PubMed ID: 20042072 [TBL] [Abstract][Full Text] [Related]
3. Characterization of the equine skeletal muscle transcriptome identifies novel functional responses to exercise training. McGivney BA; McGettigan PA; Browne JA; Evans AC; Fonseca RG; Loftus BJ; Lohan A; MacHugh DE; Murphy BA; Katz LM; Hill EW BMC Genomics; 2010 Jun; 11():398. PubMed ID: 20573200 [TBL] [Abstract][Full Text] [Related]
4. Rapid Communication: Dietary selenium improves skeletal muscle mitochondrial biogenesis in young equine athletes. White SH; Wohlgemuth S; Li C; Warren LK J Anim Sci; 2017 Sep; 95(9):4078-4084. PubMed ID: 28992020 [TBL] [Abstract][Full Text] [Related]
5. Submaximal exercise training, more than dietary selenium supplementation, improves antioxidant status and ameliorates exercise-induced oxidative damage to skeletal muscle in young equine athletes. White SH; Warren LK J Anim Sci; 2017 Feb; 95(2):657-670. PubMed ID: 29432539 [TBL] [Abstract][Full Text] [Related]
6. Alterations in oxidative gene expression in equine skeletal muscle following exercise and training. Eivers SS; McGivney BA; Fonseca RG; MacHugh DE; Menson K; Park SD; Rivero JL; Taylor CT; Katz LM; Hill EW Physiol Genomics; 2010 Jan; 40(2):83-93. PubMed ID: 19861432 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of microRNA expression in plasma and skeletal muscle of thoroughbred racehorses in training. McGivney BA; Griffin ME; Gough KF; McGivney CL; Browne JA; Hill EW; Katz LM BMC Vet Res; 2017 Nov; 13(1):347. PubMed ID: 29166903 [TBL] [Abstract][Full Text] [Related]
8. Exercise-induced modification of the skeletal muscle transcriptome in Arabian horses. Ropka-Molik K; Stefaniuk-Szmukier M; Z Ukowski K; Piórkowska K; Bugno-Poniewierska M Physiol Genomics; 2017 Jun; 49(6):318-326. PubMed ID: 28455310 [TBL] [Abstract][Full Text] [Related]
9. A HIF-1 signature dominates the attenuation in the human skeletal muscle transcriptional response to high-intensity interval training. Norrbom JM; Ydfors M; Lovric A; Perry CGR; Rundqvist H; Rullman E J Appl Physiol (1985); 2022 Jun; 132(6):1448-1459. PubMed ID: 35482326 [TBL] [Abstract][Full Text] [Related]
10. A scientific background for skeletal muscle conditioning in equine practice. Rivero JL J Vet Med A Physiol Pathol Clin Med; 2007 Aug; 54(6):321-32. PubMed ID: 17650153 [TBL] [Abstract][Full Text] [Related]
11. Metabolomic responses to high-intensity interval exercise in equine skeletal muscle: effects of rest interval duration. Takahashi K; Mukai K; Takahashi Y; Ebisuda Y; Hatta H; Kitaoka Y J Exp Biol; 2024 Feb; 227(4):. PubMed ID: 38235553 [TBL] [Abstract][Full Text] [Related]
12. Skeletal muscle adaptations to prolonged training, overtraining and detraining in horses. Tyler CM; Golland LC; Evans DL; Hodgson DR; Rose RJ Pflugers Arch; 1998 Aug; 436(3):391-7. PubMed ID: 9644221 [TBL] [Abstract][Full Text] [Related]
13. Skeletal muscle gene expression in response to resistance exercise: sex specific regulation. Liu D; Sartor MA; Nader GA; Gutmann L; Treutelaar MK; Pistilli EE; Iglayreger HB; Burant CF; Hoffman EP; Gordon PM BMC Genomics; 2010 Nov; 11():659. PubMed ID: 21106073 [TBL] [Abstract][Full Text] [Related]
14. Whole transcriptome analyses of six thoroughbred horses before and after exercise using RNA-Seq. Park KD; Park J; Ko J; Kim BC; Kim HS; Ahn K; Do KT; Choi H; Kim HM; Song S; Lee S; Jho S; Kong HS; Yang YM; Jhun BH; Kim C; Kim TH; Hwang S; Bhak J; Lee HK; Cho BW BMC Genomics; 2012 Sep; 13():473. PubMed ID: 22971240 [TBL] [Abstract][Full Text] [Related]
15. Skeletal muscle transcriptome profiles related to different training intensities and detraining in Standardbred horses: a search for overtraining biomarkers. te Pas MF; Wijnberg ID; Hoekman AJ; de Graaf-Roelfsema E; Keizer HA; van Breda E; Ducro B; van der Kolk JH Vet J; 2013 Sep; 197(3):717-23. PubMed ID: 23672815 [TBL] [Abstract][Full Text] [Related]
16. Moderate and high intensity sprint exercise induce differential responses in COX4I2 and PDK4 gene expression in Thoroughbred horse skeletal muscle. Hill EW; Eivers SS; McGivney BA; Fonseca RG; Gu J; Smith NA; Browne JA; MacHugh DE; Katz LM Equine Vet J Suppl; 2010 Nov; (38):576-81. PubMed ID: 21059063 [TBL] [Abstract][Full Text] [Related]
17. Moderate-intensity training in hypoxia improves exercise performance and glycolytic capacity of skeletal muscle in horses. Mukai K; Kitaoka Y; Takahashi Y; Takahashi T; Takahashi K; Ohmura H Physiol Rep; 2021 Dec; 9(23):e15145. PubMed ID: 34889527 [TBL] [Abstract][Full Text] [Related]
18. Impact of β-adrenergic signaling in PGC-1α-mediated adaptations in mouse skeletal muscle. Brandt N; Nielsen L; Thiellesen Buch B; Gudiksen A; Ringholm S; Hellsten Y; Bangsbo J; Pilegaard H Am J Physiol Endocrinol Metab; 2018 Jan; 314(1):E1-E20. PubMed ID: 28874356 [TBL] [Abstract][Full Text] [Related]
19. Adaptations of skeletal muscle mitochondria to exercise training. Lundby C; Jacobs RA Exp Physiol; 2016 Jan; 101(1):17-22. PubMed ID: 26440213 [TBL] [Abstract][Full Text] [Related]
20. Skeletal muscle adaptations and muscle genomics of performance horses. Rivero JL; Hill EW Vet J; 2016 Mar; 209():5-13. PubMed ID: 26831154 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]