BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

480 related articles for article (PubMed ID: 28793856)

  • 1. Mining sequence variations in representative polyploid sugarcane germplasm accessions.
    Yang X; Song J; You Q; Paudel DR; Zhang J; Wang J
    BMC Genomics; 2017 Aug; 18(1):594. PubMed ID: 28793856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Natural Allelic Variations in Highly Polyploidy Saccharum Complex.
    Song J; Yang X; Resende MF; Neves LG; Todd J; Zhang J; Comstock JC; Wang J
    Front Plant Sci; 2016; 7():804. PubMed ID: 27375658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GBS-based single dosage markers for linkage and QTL mapping allow gene mining for yield-related traits in sugarcane.
    Balsalobre TW; da Silva Pereira G; Margarido GR; Gazaffi R; Barreto FZ; Anoni CO; Cardoso-Silva CB; Costa EA; Mancini MC; Hoffmann HP; de Souza AP; Garcia AA; Carneiro MS
    BMC Genomics; 2017 Jan; 18(1):72. PubMed ID: 28077090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of NGS and SNP genotyping methods in sugarcane improvement programs.
    Manimekalai R; Suresh G; Govinda Kurup H; Athiappan S; Kandalam M
    Crit Rev Biotechnol; 2020 Sep; 40(6):865-880. PubMed ID: 32508157
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Target enrichment sequencing of 307 germplasm accessions identified ancestry of ancient and modern hybrids and signatures of adaptation and selection in sugarcane (Saccharum spp.), a 'sweet' crop with 'bitter' genomes.
    Yang X; Song J; Todd J; Peng Z; Paudel D; Luo Z; Ma X; You Q; Hanson E; Zhao Z; Zhao Y; Zhang J; Ming R; Wang J
    Plant Biotechnol J; 2019 Feb; 17(2):488-498. PubMed ID: 30051590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-Wide SNP Calling from Genotyping by Sequencing (GBS) Data: A Comparison of Seven Pipelines and Two Sequencing Technologies.
    Torkamaneh D; Laroche J; Belzile F
    PLoS One; 2016; 11(8):e0161333. PubMed ID: 27547936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A survey of the complex transcriptome from the highly polyploid sugarcane genome using full-length isoform sequencing and de novo assembly from short read sequencing.
    Hoang NV; Furtado A; Mason PJ; Marquardt A; Kasirajan L; Thirugnanasambandam PP; Botha FC; Henry RJ
    BMC Genomics; 2017 May; 18(1):395. PubMed ID: 28532419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enrichment of genomic DNA for polymorphism detection in a non-model highly polyploid crop plant.
    Bundock PC; Casu RE; Henry RJ
    Plant Biotechnol J; 2012 Aug; 10(6):657-67. PubMed ID: 22624722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ddRADseq-mediated detection of genetic variants in sugarcane.
    Molina C; Aguirre NC; Vera PA; Filippi CV; Puebla AF; Poltri SNM; Paniego NB; Acevedo A
    Plant Mol Biol; 2023 Jan; 111(1-2):205-219. PubMed ID: 36367622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. UGbS-Flex, a novel bioinformatics pipeline for imputation-free SNP discovery in polyploids without a reference genome: finger millet as a case study.
    Qi P; Gimode D; Saha D; Schröder S; Chakraborty D; Wang X; Dida MM; Malmberg RL; Devos KM
    BMC Plant Biol; 2018 Jun; 18(1):117. PubMed ID: 29902967
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide association study of multiple yield traits in a diversity panel of polyploid sugarcane (Saccharum spp.).
    Yang X; Luo Z; Todd J; Sood S; Wang J
    Plant Genome; 2020 Mar; 13(1):e20006. PubMed ID: 33016641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeted single nucleotide polymorphism (SNP) discovery in a highly polyploid plant species using 454 sequencing.
    Bundock PC; Eliott FG; Ablett G; Benson AD; Casu RE; Aitken KS; Henry RJ
    Plant Biotechnol J; 2009 May; 7(4):347-54. PubMed ID: 19386042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development, cross-species/genera transferability of novel EST-SSR markers and their utility in revealing population structure and genetic diversity in sugarcane.
    Singh RK; Jena SN; Khan S; Yadav S; Banarjee N; Raghuvanshi S; Bhardwaj V; Dattamajumder SK; Kapur R; Solomon S; Swapna M; Srivastava S; Tyagi AK
    Gene; 2013 Jul; 524(2):309-29. PubMed ID: 23587912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterisation of single nucleotide polymorphisms in sugarcane ESTs.
    Cordeiro GM; Eliott F; McIntyre CL; Casu RE; Henry RJ
    Theor Appl Genet; 2006 Jul; 113(2):331-43. PubMed ID: 16791699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of an Axiom Sugarcane100K SNP array for genetic map construction and QTL identification.
    You Q; Yang X; Peng Z; Islam MS; Sood S; Luo Z; Comstock J; Xu L; Wang J
    Theor Appl Genet; 2019 Oct; 132(10):2829-2845. PubMed ID: 31321474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast-GBS: a new pipeline for the efficient and highly accurate calling of SNPs from genotyping-by-sequencing data.
    Torkamaneh D; Laroche J; Bastien M; Abed A; Belzile F
    BMC Bioinformatics; 2017 Jan; 18(1):5. PubMed ID: 28049422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative structural analysis of Bru1 region homeologs in Saccharum spontaneum and S. officinarum.
    Zhang J; Sharma A; Yu Q; Wang J; Li L; Zhu L; Zhang X; Chen Y; Ming R
    BMC Genomics; 2016 Jun; 17():446. PubMed ID: 27287040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Informative genomic microsatellite markers for efficient genotyping applications in sugarcane.
    Parida SK; Kalia SK; Kaul S; Dalal V; Hemaprabha G; Selvi A; Pandit A; Singh A; Gaikwad K; Sharma TR; Srivastava PS; Singh NK; Mohapatra T
    Theor Appl Genet; 2009 Jan; 118(2):327-38. PubMed ID: 18946655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single nucleotide polymorphism in sugar pathway and disease resistance genes in sugarcane.
    Parida SK; Kalia S; Pandit A; Nayak P; Singh RK; Gaikwad K; Srivastava PS; Singh NK; Mohapatra T
    Plant Cell Rep; 2016 Aug; 35(8):1629-53. PubMed ID: 27289592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sugarcane genome sequencing by methylation filtration provides tools for genomic research in the genus Saccharum.
    Grativol C; Regulski M; Bertalan M; McCombie WR; da Silva FR; Zerlotini Neto A; Vicentini R; Farinelli L; Hemerly AS; Martienssen RA; Ferreira PC
    Plant J; 2014 Jul; 79(1):162-72. PubMed ID: 24773339
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.