These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 28794065)

  • 1. Vasa recta pericyte density is negatively associated with vascular congestion in the renal medulla following ischemia reperfusion in rats.
    Crislip GR; O'Connor PM; Wei Q; Sullivan JC
    Am J Physiol Renal Physiol; 2017 Nov; 313(5):F1097-F1105. PubMed ID: 28794065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Persistent vascular congestion in male spontaneously hypertensive rats contributes to delayed recovery of renal function following renal ischemia perfusion compared with females.
    Mohamed R; Crislip GR; McLarnon S; Wei Q; O'Connor PM; Sullivan JC
    Clin Sci (Lond); 2022 Jun; 136(11):825-840. PubMed ID: 35535709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipopolysaccharide Pretreatment Prevents Medullary Vascular Congestion following Renal Ischemia by Limiting Early Reperfusion of the Medullary Circulation.
    McLarnon SR; Wilson K; Patel B; Sun J; Sartain CL; Mejias CD; Musall JB; Sullivan JC; Wei Q; Chen JK; Hyndman KA; Marshall B; Yang H; Fogo AB; O'Connor PM
    J Am Soc Nephrol; 2022 Apr; 33(4):769-785. PubMed ID: 35115326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pericyte-mediated constriction of renal capillaries evokes no-reflow and kidney injury following ischaemia.
    Freitas F; Attwell D
    Elife; 2022 Mar; 11():. PubMed ID: 35285797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Renal medullary effects of transient prehypertensive treatment in young spontaneously hypertensive rats.
    Baumann M; Janssen BJ; Rob Hermans JJ; Bartholome R; Smits JF; Struijker Boudier HA
    Acta Physiol (Oxf); 2009 Jun; 196(2):231-7. PubMed ID: 18983459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An intact kidney slice model to investigate vasa recta properties and function in situ.
    Crawford C; Kennedy-Lydon T; Sprott C; Desai T; Sawbridge L; Munday J; Unwin RJ; Wildman SS; Peppiatt-Wildman CM
    Nephron Physiol; 2012; 120(3):p17-31. PubMed ID: 22833057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonsteroidal anti-inflammatory drugs alter vasa recta diameter via pericytes.
    Kennedy-Lydon T; Crawford C; Wildman SS; Peppiatt-Wildman CM
    Am J Physiol Renal Physiol; 2015 Oct; 309(7):F648-57. PubMed ID: 26202223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inflammatory mediators act at renal pericytes to elicit contraction of vasa recta and reduce pericyte density along the kidney medullary vascular network.
    Lilley RJ; Taylor KD; Wildman SSP; Peppiatt-Wildman CM
    Front Physiol; 2023; 14():1194803. PubMed ID: 37362447
    [No Abstract]   [Full Text] [Related]  

  • 9. Extracellular nucleotides affect pericyte-mediated regulation of rat in situ vasa recta diameter.
    Crawford C; Kennedy-Lydon TM; Callaghan H; Sprott C; Simmons RL; Sawbridge L; Syme HM; Unwin RJ; Wildman SS; Peppiatt-Wildman CM
    Acta Physiol (Oxf); 2011 Jul; 202(3):241-51. PubMed ID: 21624094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Greater high-mobility group box 1 in male compared with female spontaneously hypertensive rats worsens renal ischemia-reperfusion injury.
    Mohamed R; Rafikova O; O'Connor PM; Sullivan JC
    Clin Sci (Lond); 2020 Jul; 134(13):1751-1762. PubMed ID: 32608481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Renal pericytes: regulators of medullary blood flow.
    Kennedy-Lydon TM; Crawford C; Wildman SS; Peppiatt-Wildman CM
    Acta Physiol (Oxf); 2013 Feb; 207(2):212-25. PubMed ID: 23126245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ischemic Renal Injury: Can Renal Anatomy and Associated Vascular Congestion Explain Why the Medulla and Not the Cortex Is Where the Trouble Starts?
    Ray SC; Mason J; O'Connor PM
    Semin Nephrol; 2019 Nov; 39(6):520-529. PubMed ID: 31836035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pericyte regulation of renal medullary blood flow.
    Pallone TL; Silldorff EP
    Exp Nephrol; 2001; 9(3):165-70. PubMed ID: 11340300
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sustained activation of 12/15 lipoxygenase (12/15 LOX) contributes to impaired renal recovery post ischemic injury in male SHR compared to females.
    Mohamed R; Sullivan JC
    Mol Med; 2023 Dec; 29(1):163. PubMed ID: 38049738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation and perfusion of rat inner medullary vasa recta.
    Evans KK; Nawata CM; Pannabecker TL
    Am J Physiol Renal Physiol; 2015 Aug; 309(4):F300-4. PubMed ID: 26062876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sympathetic nerve-derived ATP regulates renal medullary vasa recta diameter via pericyte cells: a role for regulating medullary blood flow?
    Crawford C; Wildman SS; Kelly MC; Kennedy-Lydon TM; Peppiatt-Wildman CM
    Front Physiol; 2013; 4():307. PubMed ID: 24194721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acute effect of cyclosporin on inner medullary blood flow in normal and postischemic rat kidney.
    Yagil Y
    Am J Physiol; 1990 May; 258(5 Pt 2):F1139-44. PubMed ID: 2337145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The evolving role of renal pericytes.
    Peppiatt-Wildman CM
    Curr Opin Nephrol Hypertens; 2013 Jan; 22(1):10-6. PubMed ID: 23165111
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of COX inhibitors and NO on renal hemodynamics following ischemia-reperfusion injury in normotensive and hypertensive rats.
    Knight S; Johns EJ
    Am J Physiol Renal Physiol; 2005 Nov; 289(5):F1072-7. PubMed ID: 15956774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Renal cortical and papillary blood flow in spontaneously hypertensive rats.
    Roman RJ; Kaldunski ML
    Hypertension; 1988 Jun; 11(6 Pt 2):657-63. PubMed ID: 3391676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.