BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 28794162)

  • 1. The relative compliance of energy-storing tendons may be due to the helical fibril arrangement of their fascicles.
    Shearer T; Thorpe CT; Screen HRC
    J R Soc Interface; 2017 Aug; 14(133):. PubMed ID: 28794162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Specialization of tendon mechanical properties results from interfascicular differences.
    Thorpe CT; Udeze CP; Birch HL; Clegg PD; Screen HR
    J R Soc Interface; 2012 Nov; 9(76):3108-17. PubMed ID: 22764132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fascicles and the interfascicular matrix show adaptation for fatigue resistance in energy storing tendons.
    Thorpe CT; Riley GP; Birch HL; Clegg PD; Screen HRC
    Acta Biomater; 2016 Sep; 42():308-315. PubMed ID: 27286677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The interfascicular matrix enables fascicle sliding and recovery in tendon, and behaves more elastically in energy storing tendons.
    Thorpe CT; Godinho MSC; Riley GP; Birch HL; Clegg PD; Screen HRC
    J Mech Behav Biomed Mater; 2015 Dec; 52():85-94. PubMed ID: 25958330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Helical sub-structures in energy-storing tendons provide a possible mechanism for efficient energy storage and return.
    Thorpe CT; Klemt C; Riley GP; Birch HL; Clegg PD; Screen HR
    Acta Biomater; 2013 Aug; 9(8):7948-56. PubMed ID: 23669621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and collagen crimp patterns of functionally distinct equine tendons, revealed by quantitative polarised light microscopy (qPLM).
    Spiesz EM; Thorpe CT; Thurner PJ; Screen HRC
    Acta Biomater; 2018 Apr; 70():281-292. PubMed ID: 29409868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Are the material properties and matrix composition of equine flexor and extensor tendons determined by their functions?
    Batson EL; Paramour RJ; Smith TJ; Birch HL; Patterson-Kane JC; Goodship AE
    Equine Vet J; 2003 May; 35(3):314-8. PubMed ID: 12755437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Capacity for sliding between tendon fascicles decreases with ageing in injury prone equine tendons: a possible mechanism for age-related tendinopathy?
    Thorpe CT; Udeze CP; Birch HL; Clegg PD; Screen HR
    Eur Cell Mater; 2013 Jan; 25():48-60. PubMed ID: 23300032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative study of the characteristics and properties of tendinocytes derived from three tendons in the equine forelimb.
    Hosaka YZ; Takahashi H; Uratsuji T; Tangkawattana P; Ueda H; Takehana K
    Tissue Cell; 2010 Feb; 42(1):9-17. PubMed ID: 19640554
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Maturational alterations in gap junction expression and associated collagen synthesis in response to tendon function.
    Young NJ; Becker DL; Fleck RA; Goodship AE; Patterson-Kane JC
    Matrix Biol; 2009 Jul; 28(6):311-23. PubMed ID: 19481603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new strain energy function for modelling ligaments and tendons whose fascicles have a helical arrangement of fibrils.
    Shearer T
    J Biomech; 2015 Sep; 48(12):3017-25. PubMed ID: 26283409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fascicles from energy-storing tendons show an age-specific response to cyclic fatigue loading.
    Thorpe CT; Riley GP; Birch HL; Clegg PD; Screen HR
    J R Soc Interface; 2014 Mar; 11(92):20131058. PubMed ID: 24402919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fascicles and the interfascicular matrix show decreased fatigue life with ageing in energy storing tendons.
    Thorpe CT; Riley GP; Birch HL; Clegg PD; Screen HRC
    Acta Biomater; 2017 Jul; 56():58-64. PubMed ID: 28323176
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Matrix metabolism rate differs in functionally distinct tendons.
    Birch HL; Worboys S; Eissa S; Jackson B; Strassburg S; Clegg PD
    Matrix Biol; 2008 Apr; 27(3):182-9. PubMed ID: 18032005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of exercise on tenocyte cellularity and tenocyte nuclear morphology in immature and mature equine digital tendons.
    Stanley RL; Goodship AE; Edwards B; Firth EC; Patterson-Kane JC
    Equine Vet J; 2008 Mar; 40(2):141-6. PubMed ID: 18093891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of exercise on age-related changes in collagen fibril diameter distributions in the common digital extensor tendons of young horses.
    Edwards LJ; Goodship AE; Birch HL; Patterson-Kane JC
    Am J Vet Res; 2005 Apr; 66(4):564-8. PubMed ID: 15900933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Age-related differences in collagen crimp patterns in the superficial digital flexor tendon core region of untrained horses.
    Patterson-Kane JC; Firth EC; Goodship AE; Parry DA
    Aust Vet J; 1997 Jan; 75(1):39-44. PubMed ID: 9034498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of fatigue loading on structure and functional behaviour of fascicles from energy-storing tendons.
    Thorpe CT; Riley GP; Birch HL; Clegg PD; Screen HR
    Acta Biomater; 2014 Jul; 10(7):3217-24. PubMed ID: 24747261
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Equine digital tendons show breed-specific differences in their mechanical properties that may relate to athletic ability and predisposition to injury.
    Verkade ME; Back W; Birch HL
    Equine Vet J; 2020 Mar; 52(2):320-325. PubMed ID: 31442314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Variations during ageing in the three-dimensional anatomical arrangement of fascicles within the equine superficial digital flexor tendon.
    Ali OJ; Comerford EJ; Clegg PD; Canty-Laird EG
    Eur Cell Mater; 2018 Feb; 35():87-102. PubMed ID: 29437201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.