These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 28794190)

  • 1. Model of rhythmic ball bouncing using a visually controlled neural oscillator.
    Avrin G; Siegler IA; Makarov M; Rodriguez-Ayerbe P
    J Neurophysiol; 2017 Oct; 118(4):2470-2482. PubMed ID: 28794190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The self-organization of ball bouncing.
    Avrin G; Siegler IA; Makarov M; Rodriguez-Ayerbe P
    Biol Cybern; 2018 Dec; 112(6):509-522. PubMed ID: 30140951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complementary spatial and timing control in rhythmic arm movements.
    Nickl RW; Ankarali MM; Cowan NJ
    J Neurophysiol; 2019 Apr; 121(4):1543-1560. PubMed ID: 30811263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Haptic feedback enhances rhythmic motor control by reducing variability, not improving convergence rate.
    Ankarali MM; Tutkun Sen H; De A; Okamura AM; Cowan NJ
    J Neurophysiol; 2014 Mar; 111(6):1286-99. PubMed ID: 24371296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Passive vs. active control of rhythmic ball bouncing: the role of visual information.
    Siegler IA; Bardy BG; Warren WH
    J Exp Psychol Hum Percept Perform; 2010 Jun; 36(3):729-50. PubMed ID: 20515200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Actively tracking 'passive' stability in a ball bouncing task.
    de Rugy A; Wei K; Müller H; Sternad D
    Brain Res; 2003 Aug; 982(1):64-78. PubMed ID: 12915241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative study of forced oscillators for the adaptive generation of rhythmic movements in robot controllers.
    Jouaiti M; Hénaff P
    Biol Cybern; 2019 Dec; 113(5-6):547-560. PubMed ID: 31576419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mixed control for perception and action: timing and error correction in rhythmic ball-bouncing.
    Siegler IA; Bazile C; Warren WH
    Exp Brain Res; 2013 May; 226(4):603-15. PubMed ID: 23515627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Passive sensorimotor stimulation triggers long lasting alpha-band fluctuations in visual perception.
    Tomassini A; D'Ausilio A
    J Neurophysiol; 2018 Feb; 119(2):380-388. PubMed ID: 29046424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A cardioid oscillator with asymmetric time ratio for establishing CPG models.
    Fu Q; Wang DH; Xu L; Yuan G
    Biol Cybern; 2018 Jun; 112(3):227-235. PubMed ID: 29332230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of information-movement couplings in a rhythmical ball-bouncing task: from space- to time-related information.
    Bazile C; Benguigui N; Siegler IA
    Exp Brain Res; 2016 Jan; 234(1):173-83. PubMed ID: 26410820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Learning new perception-action solutions in virtual ball bouncing.
    Morice AH; Siegler IA; Bardy BG; Warren WH
    Exp Brain Res; 2007 Aug; 181(2):249-65. PubMed ID: 17375292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feedback Signal from Motoneurons Influences a Rhythmic Pattern Generator.
    Rotstein HG; Schneider E; Szczupak L
    J Neurosci; 2017 Sep; 37(38):9149-9159. PubMed ID: 28821650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensorimotor knowledge from task-irrelevant feedback contributes to motor learning.
    Liu Y; Jiang W; Bi Y; Wei K
    J Neurophysiol; 2021 Sep; 126(3):723-735. PubMed ID: 34259029
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bouncing Ball with a Uniformly Varying Velocity in a Metronome Synchronization Task.
    Huang Y; Gu L; Yang J; Wu X
    J Vis Exp; 2017 Sep; (127):. PubMed ID: 28994805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting Upcoming Events Occurring in the Space Surrounding the Hand.
    Rangel ML; Souza L; Rodrigues EC; Oliveira JM; Miranda MF; Galves A; Vargas CD
    Neural Plast; 2021; 2021():6649135. PubMed ID: 33688339
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimal control of a hybrid rhythmic-discrete task: the bouncing ball revisited.
    Ronsse R; Wei K; Sternad D
    J Neurophysiol; 2010 May; 103(5):2482-93. PubMed ID: 20130042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visual feedback during motor performance is associated with increased complexity and adaptability of motor and neural output.
    Shafer RL; Solomon EM; Newell KM; Lewis MH; Bodfish JW
    Behav Brain Res; 2019 Dec; 376():112214. PubMed ID: 31494179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An optimality principle for locomotor central pattern generators.
    Ryu HX; Kuo AD
    Sci Rep; 2021 Jun; 11(1):13140. PubMed ID: 34162903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid visuomotor feedback gains are tuned to the task dynamics.
    Franklin S; Wolpert DM; Franklin DW
    J Neurophysiol; 2017 Nov; 118(5):2711-2726. PubMed ID: 28835530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.