These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 28794455)

  • 1. Low temperature difference thermoacoustic prime mover with asymmetric multi-stage loop configuration.
    Jin T; Yang R; Wang Y; Feng Y; Tang K
    Sci Rep; 2017 Aug; 7(1):7665. PubMed ID: 28794455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Helmholtz-like resonators for thermoacoustic prime movers.
    Andersen BJ; Symko OG
    J Acoust Soc Am; 2009 Feb; 125(2):787-92. PubMed ID: 19206856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acoustic streaming in annular thermoacoustic prime-movers.
    Gusev V; Job S; Bailliet H; Lotton P; Bruneau M
    J Acoust Soc Am; 2000 Sep; 108(3 Pt 1):934-45. PubMed ID: 11008797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acoustic characteristics of looped-tube thermoacoustic refrigerators with external and in-built acoustic drivers: A comparative study.
    Chen G; Xu J
    J Acoust Soc Am; 2021 Dec; 150(6):4406. PubMed ID: 34972271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation on the different types of resonators in the thermoacoustic Stirling prime mover.
    Xie X; Li Q; Li Z; Li Q
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1503-5. PubMed ID: 16987536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental demonstration of thermoacoustic energy conversion in a resonator.
    Biwa T; Tashiro Y; Mizutani U; Kozuka M; Yazaki T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 2):066304. PubMed ID: 15244723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental and numerical investigation of standing-wave thermoacoustic instability under transcritical temperature conditions.
    Martinez A; Migliorino MT; Scalo C; Heister SD
    J Acoust Soc Am; 2021 Oct; 150(4):2900. PubMed ID: 34717461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A numerical simulation method and analysis of a complete thermoacoustic-Stirling engine.
    Ling H; Luo E; Dai W
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1511-4. PubMed ID: 16996099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental study of the influence of different resonators on thermoacoustic conversion performance of a thermoacoustic-Stirling heat engine.
    Luo EC; Ling H; Dai W; Yu GY
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1507-9. PubMed ID: 16996100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Open cycle traveling wave thermoacoustics: mean temperature difference at the regenerator interface.
    Weiland NT; Zinn BT
    J Acoust Soc Am; 2003 Nov; 114(5):2791-8. PubMed ID: 14650014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Observation of traveling thermoacoustic shock waves (L).
    Biwa T; Takahashi T; Yazaki T
    J Acoust Soc Am; 2011 Dec; 130(6):3558-61. PubMed ID: 22225011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study of a thermoacoustic-Stirling engine connected to a piston-crank-flywheel assembly.
    Penelet G; Watanabe T; Biwa T
    J Acoust Soc Am; 2021 Mar; 149(3):1674. PubMed ID: 33765805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acoustic streaming in closed thermoacoustic devices.
    Bailliet H; Gusev V; Raspet R; Hiller RA
    J Acoust Soc Am; 2001 Oct; 110(4):1808-21. PubMed ID: 11681362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microwave-induced thermoacoustic signal characteristics in a dynamic temperature environment.
    Evans AL; Ma C; Hagness SC
    Biomed Phys Eng Express; 2022 Apr; 8(3):. PubMed ID: 35325886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical prediction of the onset of thermoacoustic instability from the experimental transfer matrix of a thermoacoustic core.
    Guedra M; Penelet G; Lotton P; Dalmont JP
    J Acoust Soc Am; 2011 Jul; 130(1):145-52. PubMed ID: 21786885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance evaluation of a liquid-sodium thermoacoustic engine with magnetohydrodynamic electricity generation based upon the Swift model.
    Huang J; Yang R; Wang J; Yang Y; Xu J; Luo E
    J Acoust Soc Am; 2023 Aug; 154(2):682-691. PubMed ID: 37550241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A nonlinear model of thermoacoustic devices.
    Karpov S; Prosperetti A
    J Acoust Soc Am; 2002 Oct; 112(4):1431-44. PubMed ID: 12398451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermoacoustic power conversion using a piezoelectric transducer.
    Jensen C; Raspet R
    J Acoust Soc Am; 2010 Jul; 128(1):98-103. PubMed ID: 20649205
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fishbone-like instability in a looped-tube thermoacoustic engine.
    Yu Z; Jaworski AJ; Abduljalil AS
    J Acoust Soc Am; 2010 Oct; 128(4):EL188-94. PubMed ID: 20968324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Breast cancer diagnosis with a microwave thermoacoustic imaging technique-a numerical approach.
    Soltani M; Rahpeima R; Kashkooli FM
    Med Biol Eng Comput; 2019 Jul; 57(7):1497-1513. PubMed ID: 30919269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.