These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 28794487)

  • 41. Large plasmonic absorption enhancement effect of triangular silver nanowires in silicon.
    Shahriar Sabuktagin M; Syifa Hamdan K
    R Soc Open Sci; 2020 Jul; 7(7):191926. PubMed ID: 32874602
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Designing metal hemispheres on silicon ultrathin film solar cells for plasmonic light trapping.
    Gao T; Stevens E; Lee JK; Leu PW
    Opt Lett; 2014 Aug; 39(16):4647-50. PubMed ID: 25121839
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Plasmonic core-shell metal-organic nanoparticles enhanced dye-sensitized solar cells.
    Xu Q; Liu F; Meng W; Huang Y
    Opt Express; 2012 Nov; 20(23):A898-907. PubMed ID: 23326837
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Plasmonic core-shell metal-organic nanoparticles enhanced dye-sensitized solar cells.
    Xu Q; Liu F; Meng W; Huang Y
    Opt Express; 2012 Nov; 20 Suppl 6():A898-907. PubMed ID: 23187666
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Engineered optical properties of silver-aluminum alloy nanoparticles embedded in SiON matrix for maximizing light confinement in plasmonic silicon solar cells.
    Parashar PK; Komarala VK
    Sci Rep; 2017 Oct; 7(1):12520. PubMed ID: 28970541
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Direct optical measurement of light coupling into planar waveguide by plasmonic nanoparticles.
    Pennanen AM; Toppari JJ
    Opt Express; 2013 Jan; 21 Suppl 1():A23-35. PubMed ID: 23389272
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Investigation of plasmonic gold-silica core-shell nanoparticle stability in dye-sensitized solar cell applications.
    Törngren B; Akitsu K; Ylinen A; Sandén S; Jiang H; Ruokolainen J; Komatsu M; Hamamura T; Nakazaki J; Kubo T; Segawa H; Österbacka R; Smått JH
    J Colloid Interface Sci; 2014 Aug; 427():54-61. PubMed ID: 24388614
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Quantitative Determination of Contribution by Enhanced Local Electric Field, Antenna-Amplified Light Scattering, and Surface Energy Transfer to the Performance of Plasmonic Organic Solar Cells.
    Liu S; Hou Y; Xie W; Schlücker S; Yan F; Lei DY
    Small; 2018 Jul; 14(30):e1800870. PubMed ID: 29943418
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nanopyramids and rear-located Ag nanoparticles for broad spectrum absorption enhancement in thin-film solar cells.
    Shi Y; Wang X; Liu W; Yang T; Ma J; Yang F
    Opt Express; 2014 Aug; 22(17):20473-80. PubMed ID: 25321254
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Plasmonic solar cells.
    Catchpole KR; Polman A
    Opt Express; 2008 Dec; 16(26):21793-800. PubMed ID: 19104612
    [TBL] [Abstract][Full Text] [Related]  

  • 51. 4-fold photocurrent enhancement in ultrathin nanoplasmonic perovskite solar cells.
    Cai B; Peng Y; Cheng YB; Gu M
    Opt Express; 2015 Nov; 23(24):A1700-6. PubMed ID: 26698816
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Plasmonic enhancement of the optical absorption and catalytic efficiency of BiVO₄ photoanodes decorated with Ag@SiO₂ core-shell nanoparticles.
    Abdi FF; Dabirian A; Dam B; van de Krol R
    Phys Chem Chem Phys; 2014 Aug; 16(29):15272-7. PubMed ID: 24942363
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Optimal Shell Thickness of Metal@Insulator Nanoparticles for Net Enhancement of Photogenerated Polarons in P3HT Films.
    Goh WP; Williams EL; Yang RB; Koh WS; Mhaisalkar S; Ooi ZE
    ACS Appl Mater Interfaces; 2016 Feb; 8(4):2464-9. PubMed ID: 26731049
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A light-trapping strategy for nanocrystalline silicon thin-film solar cells using three-dimensionally assembled nanoparticle structures.
    Ha K; Jang E; Jang S; Lee JK; Jang MS; Choi H; Cho JS; Choi M
    Nanotechnology; 2016 Feb; 27(5):055403. PubMed ID: 26751935
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Plasmonic Ag@oxide nanoprisms for enhanced performance of organic solar cells.
    Du P; Jing P; Li D; Cao Y; Liu Z; Sun Z
    Small; 2015 May; 11(20):2454-62. PubMed ID: 25641914
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Large Absorption Enhancement in Ultrathin Solar Cells Patterned by Metallic Nanocavity Arrays.
    Wang W; Zhang J; Che X; Qin G
    Sci Rep; 2016 Oct; 6():34219. PubMed ID: 27703176
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Design of input couplers for efficient silicon thin film solar absorbers.
    Kim SK; Song KD; Park HG
    Opt Express; 2012 Nov; 20 Suppl 6():A997-1004. PubMed ID: 23187677
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Design of input couplers for efficient silicon thin film solar absorbers.
    Kim SK; Song KD; Park HG
    Opt Express; 2012 Nov; 20(23):A997-1004. PubMed ID: 23326848
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Enhancing the driving field for plasmonic nanoparticles in thin-film solar cells.
    Santbergen R; Tan H; Zeman M; Smets AH
    Opt Express; 2014 Jun; 22 Suppl 4():A1023-8. PubMed ID: 24978065
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Dielectric back scattering patterns for light trapping in thin-film Si solar cells.
    van Lare M; Lenzmann F; Polman A
    Opt Express; 2013 Sep; 21(18):20738-46. PubMed ID: 24103947
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.