These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 28794576)

  • 1. Effective Rheology of Two-Phase Flow in Three-Dimensional Porous Media: Experiment and Simulation.
    Sinha S; Bender AT; Danczyk M; Keepseagle K; Prather CA; Bray JM; Thrane LW; Seymour JD; Codd SL; Hansen A
    Transp Porous Media; 2017; 119(1):77-94. PubMed ID: 28794576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Qualification of New Methods for Measuring In Situ Rheology of Non-Newtonian Fluids in Porous Media.
    Jacobsen JG; Shaker Shiran B; Skauge T; Sorbie KS; Skauge A
    Polymers (Basel); 2020 Feb; 12(2):. PubMed ID: 32075148
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the determination of a generalized Darcy equation for yield-stress fluid in porous media using a Lattice-Boltzmann TRT scheme.
    Talon L; Bauer D
    Eur Phys J E Soft Matter; 2013 Dec; 36(12):139. PubMed ID: 24326905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. History independence of steady state in simultaneous two-phase flow through two-dimensional porous media.
    Erpelding M; Sinha S; Tallakstad KT; Hansen A; Flekkøy EG; Måløy KJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):053004. PubMed ID: 24329348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pore-scale effects during the transition from capillary- to viscosity-dominated flow dynamics within microfluidic porous-like domains.
    Yiotis A; Karadimitriou NK; Zarikos I; Steeb H
    Sci Rep; 2021 Feb; 11(1):3891. PubMed ID: 33594146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. General hydrodynamic features of elastoviscoplastic fluid flows through randomised porous media.
    Parvar S; Chaparian E; Tammisola O
    Theor Comput Fluid Dyn; 2024; 38(4):531-544. PubMed ID: 39092079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pore-scale visualization and characterization of viscous dissipation in porous media.
    Roman S; Soulaine C; Kovscek AR
    J Colloid Interface Sci; 2020 Jan; 558():269-279. PubMed ID: 31593860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Steady-state, simultaneous two-phase flow in porous media: an experimental study.
    Tallakstad KT; Løvoll G; Knudsen HA; Ramstad T; Flekkøy EG; Måløy KJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):036308. PubMed ID: 19905213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Breakage of non-Newtonian character in flow through a porous medium: evidence from numerical simulation.
    Bleyer J; Coussot P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063018. PubMed ID: 25019890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling cross model non-Newtonian fluid flow in porous media.
    Hauswirth SC; Bowers CA; Fowler CP; Schultz PB; Hauswirth AD; Weigand T; Miller CT
    J Contam Hydrol; 2020 Nov; 235():103708. PubMed ID: 32896762
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flux-dependent percolation transition in immiscible two-phase flows in porous media.
    Ramstad T; Hansen A; Oren PE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 2):036310. PubMed ID: 19392052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic Pore Network Modeling of Imbibition in Real Porous Media with Corner Film Flow.
    Zhao J; Zhang G; Wu K; Qin F; Fei L; Derome D; Carmeliet J
    Langmuir; 2024 Apr; 40(14):7364-7374. PubMed ID: 38544367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-newtonian fluid flow through three-dimensional disordered porous media.
    Morais AF; Seybold H; Herrmann HJ; Andrade JS
    Phys Rev Lett; 2009 Nov; 103(19):194502. PubMed ID: 20365926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Yield-stress fluids in porous media: a comparison of viscoplastic and elastoviscoplastic flows.
    Chaparian E; Izbassarov D; De Vita F; Brandt L; Tammisola O
    Meccanica; 2020; 55(2):331-342. PubMed ID: 32116390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic fluid configurations in steady-state two-phase flow in Bentheimer sandstone.
    Gao Y; Raeini AQ; Blunt MJ; Bijeljic B
    Phys Rev E; 2021 Jan; 103(1-1):013110. PubMed ID: 33601546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MRI investigation of water-oil two phase flow in straight capillary, bifurcate channel and monolayered glass bead pack.
    Liu Y; Jiang L; Zhu N; Zhao Y; Zhang Y; Wang D; Yang M; Zhao J; Song Y
    Magn Reson Imaging; 2015 Sep; 33(7):918-26. PubMed ID: 25940392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Linking drainage front morphology with gaseous diffusion in unsaturated porous media: a lattice Boltzmann study.
    Chau JF; Or D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Nov; 74(5 Pt 2):056304. PubMed ID: 17279990
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetohydrodynamic double-diffusive peristaltic flow of radiating fourth-grade nanofluid through a porous medium with viscous dissipation and heat generation/absorption.
    Mohamed RA; Abo-Dahab SM; Abd-Alla AM; Soliman MS
    Sci Rep; 2023 Aug; 13(1):13096. PubMed ID: 37567889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A steady-state kinetic interface-sensitive tracer (KIS-SST) method to measure capillary associated interfacial area in a simultaneous co-flow condition.
    Abdullah H; Gao H; Tatomir A; Sauter M
    J Contam Hydrol; 2023 Jul; 257():104217. PubMed ID: 37379622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic network modeling of two-phase drainage in porous media.
    Al-Gharbi MS; Blunt MJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 2):016308. PubMed ID: 15697723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.