These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 28794576)

  • 21. Squirt flow in porous media saturated by Maxwell-type non-Newtonian fluids.
    Solazzi SG; Quintal B; Holliger K
    Phys Rev E; 2021 Feb; 103(2-1):023101. PubMed ID: 33736057
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Generalized three-dimensional lattice Boltzmann color-gradient method for immiscible two-phase pore-scale imbibition and drainage in porous media.
    Leclaire S; Parmigiani A; Malaspinas O; Chopard B; Latt J
    Phys Rev E; 2017 Mar; 95(3-1):033306. PubMed ID: 28415302
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Study of the fluid flow characteristics in a porous medium for CO2 geological storage using MRI.
    Song Y; Jiang L; Liu Y; Yang M; Zhou X; Zhao Y; Dou B; Abudula A; Xue Z
    Magn Reson Imaging; 2014 Jun; 32(5):574-84. PubMed ID: 24674025
    [TBL] [Abstract][Full Text] [Related]  

  • 24. New insights on the complex dynamics of two-phase flow in porous media under intermediate-wet conditions.
    Rabbani HS; Joekar-Niasar V; Pak T; Shokri N
    Sci Rep; 2017 Jul; 7(1):4584. PubMed ID: 28676665
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transition in the Flow of Power-Law Fluids through Isotropic Porous Media.
    Zami-Pierre F; de Loubens R; Quintard M; Davit Y
    Phys Rev Lett; 2016 Aug; 117(7):074502. PubMed ID: 27563969
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Predictive network modeling of single-phase non-Newtonian flow in porous media.
    Lopez X; Valvatne PH; Blunt MJ
    J Colloid Interface Sci; 2003 Aug; 264(1):256-65. PubMed ID: 12885543
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Linking continuum-scale state of wetting to pore-scale contact angles in porous media.
    Sun C; McClure JE; Mostaghimi P; Herring AL; Shabaninejad M; Berg S; Armstrong RT
    J Colloid Interface Sci; 2020 Mar; 561():173-180. PubMed ID: 31812863
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ion transport and current rectification in a charged conical nanopore filled with viscoelastic fluids.
    Trivedi M; Nirmalkar N
    Sci Rep; 2022 Feb; 12(1):2547. PubMed ID: 35169151
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Prediction of immiscible two-phase flow properties in a two-dimensional Berea sandstone using the pore-scale lattice Boltzmann simulation.
    Xu M; Liu H
    Eur Phys J E Soft Matter; 2018 Oct; 41(10):124. PubMed ID: 30324324
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Local wettability reversal during steady-state two-phase flow in porous media.
    Sinha S; Grøva M; Ødegården TB; Skjetne E; Hansen A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 2):037303. PubMed ID: 22060540
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pore-Scale Modeling of the Effect of Wettability on Two-Phase Flow Properties for Newtonian and Non-Newtonian Fluids.
    Tembely M; Alameri WS; AlSumaiti AM; Jouini MS
    Polymers (Basel); 2020 Nov; 12(12):. PubMed ID: 33260501
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Gas permeability of ice-templated, unidirectional porous ceramics.
    Seuba J; Deville S; Guizard C; Stevenson AJ
    Sci Technol Adv Mater; 2016; 17(1):313-323. PubMed ID: 27877884
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Centrifuge modeling of air sparging - a study of air flow through saturated porous media.
    Marulanda C; Culligan PJ; Germaine JT
    J Hazard Mater; 2000 Feb; 72(2-3):179-215. PubMed ID: 10650190
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Double-diffusive peristaltic MHD Sisko nanofluid flow through a porous medium in presence of non-linear thermal radiation, heat generation/absorption, and Joule heating.
    Abo-Dahab SM; Mohamed RA; Abd-Alla AM; Soliman MS
    Sci Rep; 2023 Jan; 13(1):1432. PubMed ID: 36697466
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Porous Media Model for Blood Flow within Reticulated Foam.
    Ortega JM
    Chem Eng Sci; 2013 Aug; 99():59-66. PubMed ID: 24031095
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Research on the Influence of Heterogeneity and Viscosity on the Fluid Intrusion Mechanism of the Water Flooding Process Based on the Microscopic Visualization Experiment.
    Wang J; Li J; Li Y; Xu R; Xu G; Yang J
    ACS Omega; 2024 Jan; 9(2):2866-2873. PubMed ID: 38250406
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Water flow across the interface of contrasting materials: Pressure discontinuity and its implications.
    Li Z; Wang D; Zhang X; Crawford JW
    J Hydrol (Amst); 2018 Nov; 566():435-440. PubMed ID: 31007276
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of shear-thinning fluids on residual oil formation in microfluidic pore networks.
    Rodríguez de Castro A; Oostrom M; Shokri N
    J Colloid Interface Sci; 2016 Jun; 472():34-43. PubMed ID: 26998787
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of Non-Newtonian Flow on Polymer Flooding in Heavy Oil Reservoirs.
    Xin X; Yu G; Chen Z; Wu K; Dong X; Zhu Z
    Polymers (Basel); 2018 Nov; 10(11):. PubMed ID: 30961150
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.