These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 28794818)

  • 1. Electrophoretic stretching and imaging of single native chromatin fibers in nanoslits.
    Yeh JW; Szeto K
    Biomicrofluidics; 2017 Jul; 11(4):044108. PubMed ID: 28794818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A device for extraction, manipulation and stretching of DNA from single human chromosomes.
    Rasmussen KH; Marie R; Lange JM; Svendsen WE; Kristensen A; Mir KU
    Lab Chip; 2011 Apr; 11(8):1431-3. PubMed ID: 21350789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ordered arrays of native chromatin molecules for high-resolution imaging and analysis.
    Cerf A; Tian HC; Craighead HG
    ACS Nano; 2012 Sep; 6(9):7928-34. PubMed ID: 22816516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stretching of Tethered DNA in Nanoslits.
    Yeh JW; Szeto K
    ACS Macro Lett; 2016 Oct; 5(10):1114-1118. PubMed ID: 35658191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-destructive handling of individual chromatin fibers isolated from single cells in a microfluidic device utilizing an optically driven microtool.
    Oana H; Nishikawa K; Matsuhara H; Yamamoto A; Yamamoto TG; Haraguchi T; Hiraoka Y; Washizu M
    Lab Chip; 2014 Feb; 14(4):696-704. PubMed ID: 24356711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaporation-driven transport-control of small molecules along nanoslits.
    Seo S; Ha D; Kim T
    Nat Commun; 2021 Feb; 12(1):1336. PubMed ID: 33637759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stretching chromatin through confinement.
    Streng DE; Lim SF; Pan J; Karpusenka A; Riehn R
    Lab Chip; 2009 Oct; 9(19):2772-4. PubMed ID: 19967112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Super-resolution imaging of linearized chromatin in tunable nanochannels.
    Lee JH; Chiu JH; Ginga NJ; Ahmed T; Thouless MD; Liu Y; Takayama S
    Nanoscale Horiz; 2023 Jul; 8(8):1043-1053. PubMed ID: 37221952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Super-resolution microscopy of chromatin fibers and quantitative DNA methylation analysis of DNA fiber preparations.
    Franek M; Kilar A; Fojtík P; Olšinová M; Benda A; Rotrekl V; Dvořáčková M; Fajkus J
    J Cell Sci; 2021 Aug; 134(15):. PubMed ID: 34350964
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-molecule force spectroscopy on histone H4 tail-cross-linked chromatin reveals fiber folding.
    Kaczmarczyk A; Allahverdi A; Brouwer TB; Nordenskiöld L; Dekker NH; van Noort J
    J Biol Chem; 2017 Oct; 292(42):17506-17513. PubMed ID: 28855255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface-modified elastomeric nanofluidic devices for single nanoparticle trapping.
    Sharma D; Lim RYH; Pfohl T; Ekinci Y
    Microsyst Nanoeng; 2021; 7():46. PubMed ID: 34567759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuous high throughput nanofluidic separation through tangential-flow vertical nanoslit arrays.
    Bassu M; Holik P; Schmitz S; Steltenkamp S; Burg TP
    Lab Chip; 2016 Nov; 16(23):4546-4553. PubMed ID: 27766330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studying Chromatin Epigenetics with Fluorescence Microscopy.
    Stepanov AI; Besedovskaia ZV; Moshareva MA; Lukyanov KA; Putlyaeva LV
    Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How pressure affects confine water inside different nanoslits.
    Zhang Q; Wang X; Li J; Lu S; Lu D
    RSC Adv; 2019 Jun; 9(33):19086-19094. PubMed ID: 35516882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Live-cell imaging probes to track chromatin modification dynamics.
    Sato Y; Nakao M; Kimura H
    Microscopy (Oxf); 2021 Oct; 70(5):415-422. PubMed ID: 34329472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Micro- and nanofluidic technologies for epigenetic profiling.
    Matsuoka T; Choul Kim B; Moraes C; Han M; Takayama S
    Biomicrofluidics; 2013 Jul; 7(4):41301. PubMed ID: 23964309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ProbC: joint modeling of epigenome and transcriptome effects in 3D genome.
    Sefer E
    BMC Genomics; 2022 Apr; 23(1):287. PubMed ID: 35397520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleosomes Exhibit Non-uniform Unwrapping Along Native Chromatin Fibers with Increasing Salt Concentration as Revealed by Direct Imaging in a Microfluidic Channel.
    Mori H; Okeyo KO; Washizu M; Oana H
    Biotechnol J; 2018 Jan; 13(1):. PubMed ID: 29024414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA topology in chromatin is defined by nucleosome spacing.
    Nikitina T; Norouzi D; Grigoryev SA; Zhurkin VB
    Sci Adv; 2017 Oct; 3(10):e1700957. PubMed ID: 29098179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physical properties of DNA and chromatin isolated from G1- and S-phase HeLa S-3 cells. Effects of histone H1 phosphorylation and stage-specific nonhistone chromosomal proteins on the molar ellipticity of native and reconstituted nucleoproteins during thermal denaturation.
    Dolby TN; Ajiro K; Borun TW; Gilmour RS; Zweidler A; Cohen L; Miller P; Nieolini C
    Biochemistry; 1979 Apr; 18(7):1333-44. PubMed ID: 427116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.