These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 2879497)

  • 1. The relative roles of neuronal activity and direct presynaptic mechanisms in controlling the release of dopamine from the cat caudate nucleus.
    Cheramy A; Romo R; Glowinski J
    Ann N Y Acad Sci; 1986; 473():80-91. PubMed ID: 2879497
    [No Abstract]   [Full Text] [Related]  

  • 2. Involvement of cortico-striatal "glutamatergic" neurons in the presynaptic control of dopamine release in the cat caudate nucleus.
    Chéramy A; Barbeito L; Romo R; Godeheu G; Glowinski J
    Clin Neuropharmacol; 1986; 9 Suppl 4():500-2. PubMed ID: 3567956
    [No Abstract]   [Full Text] [Related]  

  • 3. [Involvement of glutamate released from cortico-striatal fibers in the presynaptic control of dopamine liberation in the caudal nucleus of the cat].
    Barbeito L; Godeheu G; Pittaluga A; Glowinski J
    Encephale; 1989; 15 Spec No():139-42. PubMed ID: 2568252
    [No Abstract]   [Full Text] [Related]  

  • 4. In vivo presynaptic control of dopamine release in the cat caudate nucleus--III. Further evidence for the implication of corticostriatal glutamatergic neurons.
    Romo R; Chéramy A; Godeheu G; Glowinski J
    Neuroscience; 1986 Dec; 19(4):1091-9. PubMed ID: 2881228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo presynaptic control of dopamine release in the cat caudate nucleus--II. Facilitatory or inhibitory influence of L-glutamate.
    Chéramy A; Romo R; Godeheu G; Baruch P; Glowinski J
    Neuroscience; 1986 Dec; 19(4):1081-90. PubMed ID: 2881227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Respective contributions of neuronal activity and presynaptic mechanisms in the control of the in vivo release of dopamine.
    Chéramy A; Barbeito L; Godeheu G; Desce JM; Pittaluga A; Galli T; Artaud F; Glowinski J
    J Neural Transm Suppl; 1990; 29():183-93. PubMed ID: 1972733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Stimulating chemical transmitter systems in the brain].
    Herrling PL
    Schweiz Arch Neurol Psychiatr (1985); 1986; 137(5):41-57. PubMed ID: 2431472
    [No Abstract]   [Full Text] [Related]  

  • 8. Presynaptic regulation of dopaminergic transmission in the striatum.
    Glowinski J; Chéramy A; Romo R; Barbeito L
    Cell Mol Neurobiol; 1988 Mar; 8(1):7-17. PubMed ID: 2900072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. I. Synaptic potentials and discharge characteristics of caudate neurons activated by thalamic stimulation.
    Purpura DP; Malliani A
    Brain Res; 1967 Oct; 6(2):325-40. PubMed ID: 6056712
    [No Abstract]   [Full Text] [Related]  

  • 10. In vivo evidence for an inhibitory glutamatergic control of serotonin release in the cat caudate nucleus: involvement of GABA neurons.
    Becquet D; Faudon M; Hery F
    Brain Res; 1990 Jun; 519(1-2):82-8. PubMed ID: 1975768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The susceptibility to acetylcholine and dopamine in the caudate nucleus of cats with chronic nigrostriatal lesions.
    Sphelmann R
    Trans Am Neurol Assoc; 1974; 99():255-7. PubMed ID: 4156892
    [No Abstract]   [Full Text] [Related]  

  • 12. Involvement of structures of the striato-thalamo-cortical system in an operant defensive conditioned reflex.
    Mikhailov AV
    Neurosci Behav Physiol; 1997; 27(5):566-9. PubMed ID: 9353780
    [No Abstract]   [Full Text] [Related]  

  • 13. Electrophysiological properties of basal ganglia synaptic relationship.
    Purpura DP
    Pharmacol Ther B; 1975; 1(1):17-38. PubMed ID: 817319
    [No Abstract]   [Full Text] [Related]  

  • 14. Intracellular responses of caudate neurons to brain stem stimulation.
    Hull CD; Bernardi G; Buchwald NA
    Brain Res; 1970 Aug; 22(2):163-79. PubMed ID: 5458664
    [No Abstract]   [Full Text] [Related]  

  • 15. The glutamate-mediated release of dopamine in the rat striatum: further characterization of the dual excitatory-inhibitory function.
    Leviel V; Gobert A; Guibert B
    Neuroscience; 1990; 39(2):305-12. PubMed ID: 1982344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Structural-functional organization of conditioned reflex activities].
    Suvorov NF
    Nerv Sist; 1988; 26():94-113. PubMed ID: 3173593
    [No Abstract]   [Full Text] [Related]  

  • 17. In vivo measurement of [3H]GABA release: an approach to the study of the regulation of GABA-containing neurons in the basal ganglia and associated structures in the cat and the rat.
    Besson MJ; Kemel ML; Gauchy C; Girault JA; Spampinato U; Lantin N; Desban M; Glowinski J
    Ann N Y Acad Sci; 1986; 473():475-88. PubMed ID: 3541740
    [No Abstract]   [Full Text] [Related]  

  • 18. Physiological organization of the basal ganglia.
    Purpura DP
    Res Publ Assoc Res Nerv Ment Dis; 1976; 55():91-114. PubMed ID: 1005909
    [No Abstract]   [Full Text] [Related]  

  • 19. Electrocortical activity following cholinergic stimulation of the caudate nucleus in the cat.
    Langlois JM; Poussart Y
    Brain Res; 1969 Oct; 15(2):581-3. PubMed ID: 5344397
    [No Abstract]   [Full Text] [Related]  

  • 20. Sleep-wakefulness, EEG and behavioral studies of chronic cats without neocortex and striatum: the 'diencephalic' cat.
    Villablanca J; Marcus R
    Arch Ital Biol; 1972 Oct; 110(3):348-82. PubMed ID: 4349190
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.