These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 28794997)

  • 1. Analysis of biodiesel by high performance liquid chromatography using refractive index detector.
    Syed MB
    MethodsX; 2017; 4():256-259. PubMed ID: 28794997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analytical monitoring of the production of biodiesel by high-performance liquid chromatography with various detection methods.
    Holcapek M; Jandera P; Fischer J; Prokes B
    J Chromatogr A; 1999 Oct; 858(1):13-31. PubMed ID: 10544888
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaporative light scattering detection based reversed-phase ultra-high-performance liquid chromatography method to quantify intermediates and end products of biodiesel production.
    Nakai DK; Ribeiro JAA; Martins PA; Soares IP; Salum TFC; Costa PPKG
    J Chromatogr A; 2022 Jan; 1663():462726. PubMed ID: 34954536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Determination of 11 fatty acids and fatty acids methyl esters in biodiesel using ultra performance liquid chromatography].
    Li Y; Bao G; Wang H
    Se Pu; 2008 Jul; 26(4):494-8. PubMed ID: 18959249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monitoring lipase-catalyzed methanolysis of sunflower oil by reversed-phase high-performance liquid chromatography: elucidation of the mechanisms of lipases.
    Türkan A; Kalay S
    J Chromatogr A; 2006 Sep; 1127(1-2):34-44. PubMed ID: 16769079
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating the Potential of Oleaginous Yeasts as Feedstock for Biodiesel Production.
    Mukhtar H; Suliman SM; Shabbir A; Mumtaz MW; Rashid U; Rahimuddin SA
    Protein Pept Lett; 2018; 25(2):195-201. PubMed ID: 29359654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biodiesel production from crude Jatropha curcas L. seed oil with a high content of free fatty acids.
    Berchmans HJ; Hirata S
    Bioresour Technol; 2008 Apr; 99(6):1716-21. PubMed ID: 17531473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A review of chromatographic characterization techniques for biodiesel and biodiesel blends.
    Pauls RE
    J Chromatogr Sci; 2011 May; 49(5):384-96. PubMed ID: 21549031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of alkali-catalyzed transesterification of Pongamia pinnata oil for production of biodiesel.
    Meher LC; Dharmagadda VS; Naik SN
    Bioresour Technol; 2006 Aug; 97(12):1392-7. PubMed ID: 16359862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrasonic-assisted continuous methanolysis of Jatropha curcas oil in the appearance of biodiesel used as an intermediate solvent.
    Kumar G; Singh V; Kumar D
    Ultrason Sonochem; 2017 Nov; 39():384-391. PubMed ID: 28732959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel mutant camelina and jatropha as valuable feedstocks for biodiesel production.
    Aslam MM; Khan AA; Cheema HMN; Hanif MA; Azeem MW; Azmat MA
    Sci Rep; 2020 Dec; 10(1):21868. PubMed ID: 33318535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous determination of molecular species of monoacylglycerols, diacylglycerols and triacylglycerols in human very-low-density lipoproteins by reversed-phase liquid chromatography.
    Perona JS; Ruiz-Gutierrez V
    J Chromatogr B Analyt Technol Biomed Life Sci; 2003 Feb; 785(1):89-99. PubMed ID: 12535842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of biodiesel from Vietnamese Jatropha curcas oil by a co-solvent method.
    Luu PD; Truong HT; Luu BV; Pham LN; Imamura K; Takenaka N; Maeda Y
    Bioresour Technol; 2014 Dec; 173():309-316. PubMed ID: 25310867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Analysis of triacylglycerol composition of perilla oil by combination of non-aqueous reversed-phase high performance liquid chromatography with gas chromatography].
    Cui K; Ding X; Xiao G; Dai J
    Se Pu; 1997 Nov; 15(6):470-3. PubMed ID: 15739324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Green chromatography determination of fatty acid methyl esters in biodiesel.
    Mayo CM; Alayón AB; García Rodríguez MT; Jiménez Abizanda AI; Moreno FJ
    Environ Technol; 2015; 36(13-16):1933-42. PubMed ID: 25666201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Partitioning behavior of petrodiesel/biodiesel blends in water.
    Yassine MH; Wu S; Suidan MT; Venosa AD
    Environ Sci Technol; 2012 Jul; 46(14):7487-94. PubMed ID: 22715904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High yield and conversion of biodiesel from a nonedible feedstock (Pongamia pinnata).
    Sharma YC; Singh B; Korstad J
    J Agric Food Chem; 2010 Jan; 58(1):242-7. PubMed ID: 19954216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Analysis of positional distribution of fatty acids in triacylglycerols from lard by high performance liquid chromatography].
    Zhao H; Lu Z; Bie X; Lü F
    Se Pu; 2005 Mar; 23(2):142-5. PubMed ID: 16013556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodiesel production from municipal secondary sludge.
    Kumar M; Ghosh P; Khosla K; Thakur IS
    Bioresour Technol; 2016 Sep; 216():165-71. PubMed ID: 27240231
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of crude glycerol from biodiesel plants.
    Hu S; Luo X; Wan C; Li Y
    J Agric Food Chem; 2012 Jun; 60(23):5915-21. PubMed ID: 22612334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.