These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 28795164)
41. Physically Transient Threshold Switching Device Based on Magnesium Oxide for Security Application. Sun J; Wang H; Song F; Wang Z; Dang B; Yang M; Gao H; Ma X; Hao Y Small; 2018 Jul; 14(27):e1800945. PubMed ID: 29806233 [TBL] [Abstract][Full Text] [Related]
42. Materials and processing approaches for foundry-compatible transient electronics. Chang JK; Fang H; Bower CA; Song E; Yu X; Rogers JA Proc Natl Acad Sci U S A; 2017 Jul; 114(28):E5522-E5529. PubMed ID: 28652373 [TBL] [Abstract][Full Text] [Related]
43. Engineered phages for electronics. Cui Y Biosens Bioelectron; 2016 Nov; 85():964-976. PubMed ID: 27322923 [TBL] [Abstract][Full Text] [Related]
44. Recent Progress of Textile-Based Wearable Electronics: A Comprehensive Review of Materials, Devices, and Applications. Heo JS; Eom J; Kim YH; Park SK Small; 2018 Jan; 14(3):. PubMed ID: 29205836 [TBL] [Abstract][Full Text] [Related]
45. Biosafe, Eco-Friendly Levan Polysaccharide toward Transient Electronics. Kwon KY; Lee JS; Ko GJ; Sunwoo SH; Lee S; Jo YJ; Choi CH; Hwang SW; Kim TI Small; 2018 Aug; 14(32):e1801332. PubMed ID: 29974639 [TBL] [Abstract][Full Text] [Related]
46. Multifunctional, Room-Temperature Processable, Heterogeneous Organic Passivation Layer for Oxide Semiconductor Thin-Film Transistors. Tak YJ; Keene ST; Kang BH; Kim WG; Kim SJ; Salleo A; Kim HJ ACS Appl Mater Interfaces; 2020 Jan; 12(2):2615-2624. PubMed ID: 31850727 [TBL] [Abstract][Full Text] [Related]
47. Wet-chemical passivation of InAs: toward surfaces with high stability and low toxicity. Jewett SA; Ivanisevic A Acc Chem Res; 2012 Sep; 45(9):1451-9. PubMed ID: 22716947 [TBL] [Abstract][Full Text] [Related]
48. Conductively coupled flexible silicon electronic systems for chronic neural electrophysiology. Li J; Song E; Chiang CH; Yu KJ; Koo J; Du H; Zhong Y; Hill M; Wang C; Zhang J; Chen Y; Tian L; Zhong Y; Fang G; Viventi J; Rogers JA Proc Natl Acad Sci U S A; 2018 Oct; 115(41):E9542-E9549. PubMed ID: 30228119 [TBL] [Abstract][Full Text] [Related]
49. 3D hydrogel scaffold doped with 2D graphene materials for biosensors and bioelectronics. Song HS; Kwon OS; Kim JH; Conde J; Artzi N Biosens Bioelectron; 2017 Mar; 89(Pt 1):187-200. PubMed ID: 27020065 [TBL] [Abstract][Full Text] [Related]
50. Harnessing the Rheological Properties of Liquid Metals To Shape Soft Electronic Conductors for Wearable Applications. Hirsch A; Dejace L; Michaud HO; Lacour SP Acc Chem Res; 2019 Mar; 52(3):534-544. PubMed ID: 30714364 [TBL] [Abstract][Full Text] [Related]
51. Direct light pattern integration of low-temperature solution-processed all-oxide flexible electronics. Rim YS; Chen H; Liu Y; Bae SH; Kim HJ; Yang Y ACS Nano; 2014 Sep; 8(9):9680-6. PubMed ID: 25198530 [TBL] [Abstract][Full Text] [Related]
52. Wheat straw vinegar: A more cost-effective solution than chemical fungicides for sustainable wheat plant protection. Gao T; Bian R; Joseph S; Taherymoosavi S; Mitchell DRG; Munroe P; Xu J; Shi J Sci Total Environ; 2020 Jul; 725():138359. PubMed ID: 32278180 [TBL] [Abstract][Full Text] [Related]
53. Biofriendly, Stretchable, and Reusable Hydrogel Electronics as Wearable Force Sensors. Liu H; Li M; Ouyang C; Lu TJ; Li F; Xu F Small; 2018 Sep; 14(36):e1801711. PubMed ID: 30062710 [TBL] [Abstract][Full Text] [Related]
54. Electronic and optoelectronic applications of solution-processed two-dimensional materials. Wang J; Liu B Sci Technol Adv Mater; 2019; 20(1):992-1009. PubMed ID: 31692852 [TBL] [Abstract][Full Text] [Related]
55. Organic bioelectronics in nanomedicine. Svennersten K; Larsson KC; Berggren M; Richter-Dahlfors A Biochim Biophys Acta; 2011 Mar; 1810(3):276-85. PubMed ID: 20933573 [TBL] [Abstract][Full Text] [Related]
56. Validation of Rapid Enzymatic Quantification of Acetic Acid in Vinegar on Automated Spectrophotometric System. Dini I; Di Lorenzo R; Senatore A; Coppola D; Laneri S Foods; 2020 Jun; 9(6):. PubMed ID: 32526995 [TBL] [Abstract][Full Text] [Related]
57. Measurement of the isotope ratio of acetic acid in vinegar by HS-SPME-GC-TC/C-IRMS. Hattori R; Yamada K; Shibata H; Hirano S; Tajima O; Yoshida N J Agric Food Chem; 2010 Jun; 58(12):7115-8. PubMed ID: 20504023 [TBL] [Abstract][Full Text] [Related]
58. Molecular-Scale Investigation of the Thermal and Chemical Stability of Monolayer PTCDA on Cu(111) and Cu(110). Gu C; Zhang JL; Sun S; Lian X; Ma Z; Mao H; Guo L; Wang Y; Chen W ACS Appl Mater Interfaces; 2020 May; 12(19):22327-22334. PubMed ID: 32314565 [TBL] [Abstract][Full Text] [Related]
59. Bioresorbable Electronic Implants: History, Materials, Fabrication, Devices, and Clinical Applications. Cha GD; Kang D; Lee J; Kim DH Adv Healthc Mater; 2019 Jun; 8(11):e1801660. PubMed ID: 30957984 [TBL] [Abstract][Full Text] [Related]
60. Monitoring of substrate and product concentrations in acetic fermentation processes for onion vinegar production by NIR spectroscopy: value addition to worthless onions. González-Sáiz JM; Esteban-Díez I; Sánchez-Gallardo C; Pizarro C Anal Bioanal Chem; 2008 Aug; 391(8):2937-47. PubMed ID: 18516719 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]