These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 28795282)

  • 21. Poroelastic analysis of interstitial fluid flow in a single lamellar trabecula subjected to cyclic loading.
    Kameo Y; Ootao Y; Ishihara M
    Biomech Model Mechanobiol; 2016 Apr; 15(2):361-70. PubMed ID: 26081726
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A visco-poroelastic model of functional adaptation in bones reconstructed with bio-resorbable materials.
    Giorgio I; Andreaus U; Scerrato D; dell'Isola F
    Biomech Model Mechanobiol; 2016 Oct; 15(5):1325-43. PubMed ID: 26831284
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A novel approach to estimate trabecular bone anisotropy from stress tensors.
    Hazrati Marangalou J; Ito K; van Rietbergen B
    Biomech Model Mechanobiol; 2015 Jan; 14(1):39-48. PubMed ID: 24777672
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prediction of shape and internal structure of the proximal femur using a modified level set method for structural topology optimisation.
    Bahari MK; Farahmand F; Rouhi G; Movahhedy MR
    Comput Methods Biomech Biomed Engin; 2012; 15(8):835-44. PubMed ID: 21547784
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pelvic Construct Prediction of Trabecular and Cortical Bone Structural Architecture.
    Zaharie DT; Phillips ATM
    J Biomech Eng; 2018 Sep; 140(9):. PubMed ID: 29801165
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Simulation of orthotropic microstructure remodelling of cancellous bone.
    Kowalczyk P
    J Biomech; 2010 Feb; 43(3):563-9. PubMed ID: 19879580
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Predicting changes in mechanical properties of trabecular bone by adaptive remodeling.
    Tawara D; Nagura K
    Comput Methods Biomech Biomed Engin; 2017 Mar; 20(4):415-425. PubMed ID: 27669992
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A bone remodelling model coupling micro-damage growth and repair by 3D BMU-activity.
    García-Aznar JM; Rueberg T; Doblare M
    Biomech Model Mechanobiol; 2005 Nov; 4(2-3):147-67. PubMed ID: 15942795
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Consideration of multiple load cases is critical in modelling orthotropic bone adaptation in the femur.
    Geraldes DM; Modenese L; Phillips AT
    Biomech Model Mechanobiol; 2016 Oct; 15(5):1029-42. PubMed ID: 26578078
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Poroelastic behaviour of cortical bone under harmonic axial loading: a finite element study at the osteonal scale.
    Nguyen VH; Lemaire T; Naili S
    Med Eng Phys; 2010 May; 32(4):384-90. PubMed ID: 20226715
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Parametric investigation of load-induced structure remodeling in the proximal femur.
    Marzban A; Canavan P; Warner G; Vaziri A; Nayeb-Hashemi H
    Proc Inst Mech Eng H; 2012 Jun; 226(6):450-60. PubMed ID: 22783761
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A bone remodelling model including the directional activity of BMUs.
    Martínez-Reina J; García-Aznar JM; Domínguez J; Doblaré M
    Biomech Model Mechanobiol; 2009 Apr; 8(2):111-27. PubMed ID: 18343963
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Computer simulation of trabecular remodeling in human proximal femur using large-scale voxel FE models: Approach to understanding Wolff's law.
    Tsubota K; Suzuki Y; Yamada T; Hojo M; Makinouchi A; Adachi T
    J Biomech; 2009 May; 42(8):1088-94. PubMed ID: 19403138
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Additional weight bearing during exercise and estrogen in the rat: the effect on bone mass, turnover, and structure.
    Tromp AM; Bravenboer N; Tanck E; Oostlander A; Holzmann PJ; Kostense PJ; Roos JC; Burger EH; Huiskes R; Lips P
    Calcif Tissue Int; 2006 Dec; 79(6):404-15. PubMed ID: 17160577
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Trabecular architecture can remain intact for both disuse and overload enhanced resorption characteristics.
    Tanck E; Ruimerman R; Huiskes R
    J Biomech; 2006; 39(14):2631-7. PubMed ID: 16214155
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The behavior of adaptive bone-remodeling simulation models.
    Weinans H; Huiskes R; Grootenboer HJ
    J Biomech; 1992 Dec; 25(12):1425-41. PubMed ID: 1491020
    [TBL] [Abstract][Full Text] [Related]  

  • 37. New predictive model for monitoring bone remodeling.
    Bougherara H; Klika V; Marsík F; Marík IA; Yahia L
    J Biomed Mater Res A; 2010 Oct; 95(1):9-24. PubMed ID: 20540092
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Validation of a bone loading estimation algorithm for patient-specific bone remodelling simulations.
    Christen P; Ito K; Santos AA; Müller R; Bert van Rietbergen
    J Biomech; 2013 Mar; 46(5):941-8. PubMed ID: 23332230
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Clinical Biomechanics Award 2012 - presented by the European Society of Biomechanics: large scale simulations of trabecular bone adaptation to loading and treatment.
    Levchuk A; Zwahlen A; Weigt C; Lambers FM; Badilatti SD; Schulte FA; Kuhn G; Müller R
    Clin Biomech (Bristol, Avon); 2014 Apr; 29(4):355-62. PubMed ID: 24467970
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Continuum remodeling revisited : deformation rate driven functional adaptation using a hypoelastic constitutive law.
    Negus CH; Impelluso TJ
    Biomech Model Mechanobiol; 2007 Jul; 6(4):211-26. PubMed ID: 16897103
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.