These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 2879557)
1. Glutamic acid-149 is important for enzymatic activity of yeast inorganic pyrophosphatase. Gonzalez MA; Cooperman BS Biochemistry; 1986 Nov; 25(22):7179-85. PubMed ID: 2879557 [TBL] [Abstract][Full Text] [Related]
2. Conservation of functional residues between yeast and E. coli inorganic pyrophosphatases. Lahti R; Kolakowski LF; Heinonen J; Vihinen M; Pohjanoksa K; Cooperman BS Biochim Biophys Acta; 1990 May; 1038(3):338-45. PubMed ID: 2160278 [TBL] [Abstract][Full Text] [Related]
3. Evolutionary conservation of enzymatic catalysis: quantitative comparison of the effects of mutation of aligned residues in Saccharomyces cerevisiae and Escherichia coli inorganic pyrophosphatases on enzymatic activity. Pohjanjoki P; Lahti R; Goldman A; Cooperman BS Biochemistry; 1998 Feb; 37(7):1754-61. PubMed ID: 9485300 [TBL] [Abstract][Full Text] [Related]
4. A site-directed mutagenesis study on Escherichia coli inorganic pyrophosphatase. Glutamic acid-98 and lysine-104 are important for structural integrity, whereas aspartic acids-97 and -102 are essential for catalytic activity. Lahti R; Pohjanoksa K; Pitkäranta T; Heikinheimo P; Salminen T; Meyer P; Heinonen J Biochemistry; 1990 Jun; 29(24):5761-6. PubMed ID: 1974462 [TBL] [Abstract][Full Text] [Related]
5. Identification of an arginine important for enzymatic activity within the covalent structure of yeast inorganic pyrophosphatase. Bond MW; Chiu NY; Cooperman BS Biochemistry; 1980 Jan; 19(1):94-102. PubMed ID: 6101539 [TBL] [Abstract][Full Text] [Related]
6. [Functionally important tyrosine residues in Saccharomyces cerevisiae pyrophosphatase. I. Chemical modification and localization in the primary structure]. Raznikov AV; Egorov TsA; Mirgorodskaia OA; Skliankina VA; Avaeva SM Biokhimiia; 1992 Aug; 57(8):1255-62. PubMed ID: 1327190 [TBL] [Abstract][Full Text] [Related]
7. Structural studies of the vacuolar H(+)-pyrophosphatase: sequence analysis and identification of the residues modified by fluorescent cyclohexylcarbodiimide and maleimide. Maruyama C; Tanaka Y; Takeyasu K; Yoshida M; Sato MH Plant Cell Physiol; 1998 Oct; 39(10):1045-53. PubMed ID: 9871364 [TBL] [Abstract][Full Text] [Related]
8. Inhibition of the adenosinetriphosphatase activity of Escherichia coli F1 by the water-soluble carbodiimide 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide is due to modification of several carboxyls in the beta subunit. Lötscher HR; deJong C; Capaldi RA Biochemistry; 1984 Aug; 23(18):4134-40. PubMed ID: 6237683 [TBL] [Abstract][Full Text] [Related]
9. [Functionally important residues of glutamic acid in E. coli pyrophosphatase. I. Chemical modification and localization in the primary structure]. Raznikov AV; Egorov TsA; Mirgorodskaia OV; Skliankina VA; Avaeva SM Biokhimiia; 1992 Dec; 57(12):1902-12. PubMed ID: 1363464 [TBL] [Abstract][Full Text] [Related]
10. Modification of the F0 portion of the H+-translocating adenosinetriphosphatase complex of Escherichia coli by the water-soluble carbodiimide 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide and effect on the proton channeling function. Lötscher HR; deJong C; Capaldi RA Biochemistry; 1984 Aug; 23(18):4128-34. PubMed ID: 6237682 [TBL] [Abstract][Full Text] [Related]
11. Yeast inorganic pyrophosphatase. A model for active-site structure based on 113Cd2+ and 31P NMR studies. Welsh KM; Cooperman BS Biochemistry; 1984 Oct; 23(21):4947-55. PubMed ID: 6149765 [TBL] [Abstract][Full Text] [Related]
12. The essential activated carboxyl group of inorganic pyrophosphatase. Avaeva SM; Bakuleva NP; Baratova LA; Nazarova TI; Fink NY Biochim Biophys Acta; 1977 May; 482(1):173-84. PubMed ID: 16652 [TBL] [Abstract][Full Text] [Related]
13. Differential labeling of the catalytic subunit of cAMP-dependent protein kinase with a water-soluble carbodiimide: identification of carboxyl groups protected by MgATP and inhibitor peptides. Buechler JA; Taylor SS Biochemistry; 1990 Feb; 29(7):1937-43. PubMed ID: 2331473 [TBL] [Abstract][Full Text] [Related]
14. The kinetic mechanism of yeast inorganic pyrophosphatase. Barry RJ; Dunaway-Mariano D Arch Biochem Biophys; 1987 Nov; 259(1):196-203. PubMed ID: 2825596 [TBL] [Abstract][Full Text] [Related]
15. A site-directed mutagenesis study of Saccharomyces cerevisiae pyrophosphatase. Functional conservation of the active site of soluble inorganic pyrophosphatases. Heikinheimo P; Pohjanjoki P; Helminen A; Tasanen M; Cooperman BS; Goldman A; Baykov A; Lahti R Eur J Biochem; 1996 Jul; 239(1):138-43. PubMed ID: 8706698 [TBL] [Abstract][Full Text] [Related]
16. [A functionally important Tyr-89 residue in Saccharomyces cerevisiae pyrophosphatase. II. A possible role in the mechanism of enzyme action]. Raznikov AV; Steriopolo NA; Skliankina VA; Avaeva SM Biokhimiia; 1992 Aug; 57(8):1263-70. PubMed ID: 1327191 [TBL] [Abstract][Full Text] [Related]
17. [Detection and characterization of an additional site for binding of substrate and its analogs by inorganic pyrophosphatase]. Bakuleva NP; Kostenko EB; Baĭkov AA; Avaeva SM Biokhimiia; 1981 May; 46(5):832-40. PubMed ID: 6117332 [TBL] [Abstract][Full Text] [Related]
18. The R78K and D117E active-site variants of Saccharomyces cerevisiae soluble inorganic pyrophosphatase: structural studies and mechanistic implications. Tuominen V; Heikinheimo P; Kajander T; Torkkel T; Hyytiä T; Käpylä J; Lahti R; Cooperman BS; Goldman A J Mol Biol; 1998 Dec; 284(5):1565-80. PubMed ID: 9878371 [TBL] [Abstract][Full Text] [Related]