BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 28795573)

  • 1. Hierarchical Structured Cu/Ni/TiO
    Yue Y; Juarez-Robles D; Chen Y; Ma L; Kuo WCH; Mukherjee P; Liang H
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):28695-28703. PubMed ID: 28795573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Ni Doping Content on Phase Transition and Electrochemical Performance of TiO
    Kang D; Li J; Zhang Y
    Materials (Basel); 2020 Mar; 13(6):. PubMed ID: 32183088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlled synthesis of hollow C@TiO
    Pei J; Geng H; Ang EH; Zhang L; Cao X; Zheng J; Gu H
    Nanoscale; 2018 Sep; 10(36):17327-17334. PubMed ID: 30198042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel ternary transition metal oxide solid solution: mesoporous Ni-Mn-Co-O nanowire arrays as an integrated anode for high-power lithium-ion batteries.
    Zhou J; Li D; Han J; Fan X
    Dalton Trans; 2019 Feb; 48(8):2741-2749. PubMed ID: 30724296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Porous Co3O4/CuO composite assembled from nanosheets as high-performance anodes for lithium-ion batteries.
    Hao Q; Zhao D; Duan H; Xu C
    ChemSusChem; 2015 Apr; 8(8):1435-41. PubMed ID: 25828049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D Hierarchical Porous Cu-Based Composite Current Collector with Enhanced Ligaments for Notably Improved Cycle Stability of Sn Anode in Li-Ion Batteries.
    Luo Z; Xu J; Yuan B; Hu R; Yang L; Gao Y; Zhu M
    ACS Appl Mater Interfaces; 2018 Jul; 10(26):22050-22058. PubMed ID: 29882644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Graphene Modified Cu Current Collector on the Performance of Li
    Jiang J; Nie P; Ding B; Wu W; Chang Z; Wu Y; Dou H; Zhang X
    ACS Appl Mater Interfaces; 2016 Nov; 8(45):30926-30932. PubMed ID: 27734672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Core-shell NiFe2O4@TiO2 nanorods: an anode material with enhanced electrochemical performance for lithium-ion batteries.
    Huang G; Zhang F; Du X; Wang J; Yin D; Wang L
    Chemistry; 2014 Aug; 20(35):11214-9. PubMed ID: 25044261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interpenetrated Networks between Graphitic Carbon Infilling and Ultrafine TiO
    Zheng W; Yan Z; Dai Y; Du N; Jiang X; Dai H; Li X; He G
    ACS Appl Mater Interfaces; 2017 Jun; 9(24):20491-20500. PubMed ID: 28569503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wet chemical synthesis of Cu/TiO2 nanocomposites with integrated nano-current-collectors as high-rate anode materials in lithium-ion batteries.
    Cao FF; Xin S; Guo YG; Wan LJ
    Phys Chem Chem Phys; 2011 Feb; 13(6):2014-20. PubMed ID: 21203647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hierarchical porous anatase TiO2 derived from a titanium metal-organic framework as a superior anode material for lithium ion batteries.
    Xiu Z; Alfaruqi MH; Gim J; Song J; Kim S; Vu Thi T; Duong PT; Baboo JP; Mathew V; Kim J
    Chem Commun (Camb); 2015 Aug; 51(61):12274-7. PubMed ID: 26137998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of the rate capability of nanostructured amorphous and anatase TiO2 for lithium insertion using anodic TiO2 nanotube arrays.
    Fang HT; Liu M; Wang DW; Sun T; Guan DS; Li F; Zhou J; Sham TK; Cheng HM
    Nanotechnology; 2009 Jun; 20(22):225701. PubMed ID: 19436089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile Synthesis of Pre-Lithiated LiTiO
    Lu C; Fang R; Gan Y; He X; Xiao Z; Huang H; Zhang J; Xia X; Zhang W; Xia Y
    ACS Appl Mater Interfaces; 2024 Jan; 16(1):898-906. PubMed ID: 38154079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hierarchical TiO2/C nanocomposite monoliths with a robust scaffolding architecture, mesopore-macropore network and TiO2-C heterostructure for high-performance lithium ion batteries.
    Huang HB; Yang Y; Chen LH; Wang Y; Huang SZ; Tao JW; Ma XT; Hasan T; Li Y; Xu Y; Su BL
    Nanoscale; 2016 Jun; 8(21):10928-37. PubMed ID: 26864500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Core-shell ZnCo
    Shi W; Zhao H; Lu B
    Nanotechnology; 2017 Apr; 28(16):165403. PubMed ID: 28230537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly Ordered TiO2 Microcones with High Rate Performance for Enhanced Lithium-Ion Storage.
    Rhee O; Lee G; Choi J
    ACS Appl Mater Interfaces; 2016 Jun; 8(23):14558-63. PubMed ID: 27218822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional SnO2/carbon on Cu foam for high-performance lithium ion battery anodes.
    Chen W; Maloney S; Wang W
    Nanotechnology; 2016 Oct; 27(41):415401. PubMed ID: 27587237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Copper-doped dual phase Li4Ti5O12-TiO2 nanosheets as high-rate and long cycle life anodes for high-power lithium-ion batteries.
    Chen C; Huang Y; An C; Zhang H; Wang Y; Jiao L; Yuan H
    ChemSusChem; 2015 Jan; 8(1):114-22. PubMed ID: 25425492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal organic frameworks route to in situ insertion of multiwalled carbon nanotubes in Co3O4 polyhedra as anode materials for lithium-ion batteries.
    Huang G; Zhang F; Du X; Qin Y; Yin D; Wang L
    ACS Nano; 2015 Feb; 9(2):1592-9. PubMed ID: 25629650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Unprecedented Case: A Low Specific Surface Area Anatase/N-Doped Carbon Nanocomposite Derived from a New Single Source Precursor Affords Fast and Stable Lithium Storage.
    Gao M; Zou K; Deng Y; Zhao Z; Li Y; Chen G
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):28527-28536. PubMed ID: 28795793
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.