These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 28795641)
1. Fixation of Hydrogel Constructs for Cartilage Repair in the Equine Model: A Challenging Issue. Mancini IAD; Vindas Bolaños RA; Brommer H; Castilho M; Ribeiro A; van Loon JPAM; Mensinga A; van Rijen MHP; Malda J; van Weeren R Tissue Eng Part C Methods; 2017 Nov; 23(11):804-814. PubMed ID: 28795641 [TBL] [Abstract][Full Text] [Related]
2. In vivo evaluation of 3-dimensional polycaprolactone scaffolds for cartilage repair in rabbits. Martinez-Diaz S; Garcia-Giralt N; Lebourg M; Gómez-Tejedor JA; Vila G; Caceres E; Benito P; Pradas MM; Nogues X; Ribelles JL; Monllau JC Am J Sports Med; 2010 Mar; 38(3):509-19. PubMed ID: 20093424 [TBL] [Abstract][Full Text] [Related]
3. A composite hydrogel-3D printed thermoplast osteochondral anchor as example for a zonal approach to cartilage repair: in vivo performance in a long-term equine model. Mancini IAD; Schmidt S; Brommer H; Pouran B; Schäfer S; Tessmar J; Mensinga A; van Rijen MHP; Groll J; Blunk T; Levato R; Malda J; van Weeren PR Biofabrication; 2020 Jul; 12(3):035028. PubMed ID: 32434160 [TBL] [Abstract][Full Text] [Related]
4. Comparison of Fixation Techniques of 3D-Woven Poly(ϵ-Caprolactone) Scaffolds for Cartilage Repair in a Weightbearing Porcine Large Animal Model. Friedman JM; Sennett ML; Bonadio MB; Orji KO; Neuwirth AL; Keah N; Carey JL; Moutos FT; Estes BT; Guilak F; Madry H; Mauck RL; Dodge GR Cartilage; 2018 Oct; 9(4):428-437. PubMed ID: 28397530 [TBL] [Abstract][Full Text] [Related]
5. 3D printing of fibre-reinforced cartilaginous templates for the regeneration of osteochondral defects. Critchley S; Sheehy EJ; Cunniffe G; Diaz-Payno P; Carroll SF; Jeon O; Alsberg E; Brama PAJ; Kelly DJ Acta Biomater; 2020 Sep; 113():130-143. PubMed ID: 32505800 [TBL] [Abstract][Full Text] [Related]
6. [Cartilage repair and subchondral bone reconstruction based on three-dimensional printing technique]. Zhang W; Lian Q; Li D; Wang K; Jin Z; Bian W; Liu Y; He J; Wang L Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Mar; 28(3):318-24. PubMed ID: 24844012 [TBL] [Abstract][Full Text] [Related]
7. Preclinical Testing of New Hydrogel Materials for Cartilage Repair: Overcoming Fixation Issues in a Large Animal Model. Lotz B; Bothe F; Deubel AK; Hesse E; Renz Y; Werner C; Schäfer S; Böck T; Groll J; von Rechenberg B; Richter W; Hagmann S Int J Biomater; 2021; 2021():5583815. PubMed ID: 34239571 [TBL] [Abstract][Full Text] [Related]
8. Treatment of Focal Cartilage Defects in Minipigs with Zonal Chondrocyte/Mesenchymal Progenitor Cell Constructs. Bothe F; Deubel AK; Hesse E; Lotz B; Groll J; Werner C; Richter W; Hagmann S Int J Mol Sci; 2019 Feb; 20(3):. PubMed ID: 30717402 [TBL] [Abstract][Full Text] [Related]
9. Cartilage repair with chondrocytes in fibrin hydrogel and MPEG polylactide scaffold: an in vivo study in goats. Lind M; Larsen A; Clausen C; Osther K; Everland H Knee Surg Sports Traumatol Arthrosc; 2008 Jul; 16(7):690-8. PubMed ID: 18418579 [TBL] [Abstract][Full Text] [Related]
10. A short-term evaluation of a thermoplastic polyurethane implant for osteochondral defect repair in an equine model. Korthagen NM; Brommer H; Hermsen G; Plomp SGM; Melsom G; Coeleveld K; Mastbergen SC; Weinans H; van Buul W; van Weeren PR Vet J; 2019 Sep; 251():105340. PubMed ID: 31492385 [TBL] [Abstract][Full Text] [Related]
11. The use of a cartilage decellularized matrix scaffold for the repair of osteochondral defects: the importance of long-term studies in a large animal model. Vindas Bolaños RA; Cokelaere SM; Estrada McDermott JM; Benders KE; Gbureck U; Plomp SG; Weinans H; Groll J; van Weeren PR; Malda J Osteoarthritis Cartilage; 2017 Mar; 25(3):413-420. PubMed ID: 27554995 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of new bone formation in critical-sized rat calvarial defect using 3D printed polycaprolactone/tragacanth gum-bioactive glass composite scaffolds. Janmohammadi M; Doostmohammadi N; Bahraminasab M; Nourbakhsh MS; Arab S; Asgharzade S; Ghanbari A; Satari A Int J Biol Macromol; 2024 Jun; 270(Pt 1):132361. PubMed ID: 38750857 [TBL] [Abstract][Full Text] [Related]
13. Porcine fibrin sealant combined with autologous chondrocytes successfully promotes full-thickness cartilage regeneration in a rabbit model. Yang Y; Wang X; Zha K; Tian Z; Liu S; Sui X; Wang Z; Zheng J; Wang J; Tian X; Guo Q; Zhao J J Tissue Eng Regen Med; 2021 Sep; 15(9):776-787. PubMed ID: 34044473 [TBL] [Abstract][Full Text] [Related]
14. Treatment of osteochondral defects in the rabbit's knee joint by implantation of allogeneic mesenchymal stem cells in fibrin clots. Berninger MT; Wexel G; Rummeny EJ; Imhoff AB; Anton M; Henning TD; Vogt S J Vis Exp; 2013 May; (75):e4423. PubMed ID: 23728213 [TBL] [Abstract][Full Text] [Related]
15. A Rabbit Model of Osteochondral Regeneration Using Three-Dimensional Printed Polycaprolactone-Hydroxyapatite Scaffolds Coated with Umbilical Cord Blood Mesenchymal Stem Cells and Chondrocytes. Zheng P; Hu X; Lou Y; Tang K Med Sci Monit; 2019 Oct; 25():7361-7369. PubMed ID: 31570688 [TBL] [Abstract][Full Text] [Related]
16. Surface-modified functionalized polycaprolactone scaffolds for bone repair: in vitro and in vivo experiments. Jensen J; Rölfing JH; Le DQ; Kristiansen AA; Nygaard JV; Hokland LB; Bendtsen M; Kassem M; Lysdahl H; Bünger CE J Biomed Mater Res A; 2014 Sep; 102(9):2993-3003. PubMed ID: 24123983 [TBL] [Abstract][Full Text] [Related]
17. Three-dimensional polycaprolactone-hydroxyapatite scaffolds combined with bone marrow cells for cartilage tissue engineering. Wei B; Yao Q; Guo Y; Mao F; Liu S; Xu Y; Wang L J Biomater Appl; 2015 Aug; 30(2):160-70. PubMed ID: 25766036 [TBL] [Abstract][Full Text] [Related]