These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 28795698)

  • 1. A structural signature of the breakdown of the Stokes-Einstein relation in metallic liquids.
    Pan SP; Feng SD; Qiao JW; Niu XF; Wang WM; Qin JY
    Phys Chem Chem Phys; 2017 Aug; 19(33):22094-22098. PubMed ID: 28795698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural origin of fractional Stokes-Einstein relation in glass-forming liquids.
    Pan S; Wu ZW; Wang WH; Li MZ; Xu L
    Sci Rep; 2017 Jan; 7():39938. PubMed ID: 28059111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heterogeneous diffusion, viscosity, and the Stokes-Einstein relation in binary liquids.
    Schober HR; Peng HL
    Phys Rev E; 2016 May; 93(5):052607. PubMed ID: 27300951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Breakdown of the Stokes-Einstein relationship and rapid structural ordering in CuZrAl metallic glass-forming liquids.
    Chen FZ; Mauro NA; Bertrand SM; McGrath P; Zimmer L; Kelton KF
    J Chem Phys; 2021 Sep; 155(10):104501. PubMed ID: 34525827
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Breakdown of the Stokes-Einstein relation in two, three, and four dimensions.
    Sengupta S; Karmakar S; Dasgupta C; Sastry S
    J Chem Phys; 2013 Mar; 138(12):12A548. PubMed ID: 23556799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport properties and Stokes-Einstein relation in Al-rich liquid alloys.
    Jakse N; Pasturel A
    J Chem Phys; 2016 Jun; 144(24):244502. PubMed ID: 27369522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamical, structural and chemical heterogeneities in a binary metallic glass-forming liquid.
    Puosi F; Jakse N; Pasturel A
    J Phys Condens Matter; 2018 Apr; 30(14):145701. PubMed ID: 29465041
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An alternative approach to evidence the structural conditioning in the dynamic slowdown in a polymer glass-former.
    Balbuena C; Soulé ER
    J Phys Condens Matter; 2020 Jan; 32(4):045401. PubMed ID: 31577994
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High temperature breakdown of the Stokes-Einstein relation in a computer simulated Cu-Zr melt.
    Han XJ; Li JG; Schober HR
    J Chem Phys; 2016 Mar; 144(12):124505. PubMed ID: 27036459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Frequency-dependent Stokes-Einstein relation in supercooled liquids.
    Zangi R; Kaufman LJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 1):051501. PubMed ID: 17677067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stokes-Einstein violation for liquids with bounded potentials.
    May HO; Mausbach P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 1):031201. PubMed ID: 17930233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic decoupling and local atomic order of a model multicomponent metallic glass-former.
    Kim J; Sung BJ
    J Phys Condens Matter; 2015 Jun; 27(23):235102. PubMed ID: 25993620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Translational dynamics of a rod-like probe in supercooled liquids: an experimentally realizable method to study Stokes-Einstein breakdown, dynamic heterogeneity, and amorphous order.
    Mutneja A; Karmakar S
    Soft Matter; 2021 Jun; 17(23):5738-5746. PubMed ID: 34018543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Breakdown of the Stokes-Einstein relation in supercooled water: the jump-diffusion perspective.
    Dubey V; Dueby S; Daschakraborty S
    Phys Chem Chem Phys; 2021 Sep; 23(36):19964-19986. PubMed ID: 34515269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Breakdown of the Stokes-Einstein relation in supercooled liquids: A cage-jump perspective.
    Pastore R; Kikutsuji T; Rusciano F; Matubayasi N; Kim K; Greco F
    J Chem Phys; 2021 Sep; 155(11):114503. PubMed ID: 34551555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-monotonic composition dependence of the breakdown of Stokes-Einstein relation for water in aqueous solutions of ethanol and 1-propanol: explanation using translational jump-diffusion approach.
    Dueby S; Dubey V; Indra S; Daschakraborty S
    Phys Chem Chem Phys; 2022 Aug; 24(31):18738-18750. PubMed ID: 35900000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distribution of diffusion constants and Stokes-Einstein violation in supercooled liquids.
    Sengupta S; Karmakar S
    J Chem Phys; 2014 Jun; 140(22):224505. PubMed ID: 24929405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A molecular dynamics simulations study on the relations between dynamical heterogeneity, structural relaxation, and self-diffusion in viscous liquids.
    Henritzi P; Bormuth A; Klameth F; Vogel M
    J Chem Phys; 2015 Oct; 143(16):164502. PubMed ID: 26520522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The fractional Stokes-Einstein equation: application to Lennard-Jones, molecular, and ionic liquids.
    Harris KR
    J Chem Phys; 2009 Aug; 131(5):054503. PubMed ID: 19673570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validity of the Stokes-Einstein relation in liquids: simple rules from the excess entropy.
    Pasturel A; Jakse N
    J Phys Condens Matter; 2016 Dec; 28(48):485101. PubMed ID: 27690250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.