BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 28795712)

  • 1. Electron transport properties in dye-sensitized solar cells with {001} facet-dominant TiO
    Maitani MM; Tanaka K; Shen Q; Toyoda T; Wada Y
    Phys Chem Chem Phys; 2017 Aug; 19(33):22129-22140. PubMed ID: 28795712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal-free organic dyes for TiO2 and ZnO dye-sensitized solar cells.
    Selopal GS; Wu HP; Lu J; Chang YC; Wang M; Vomiero A; Concina I; Diau EW
    Sci Rep; 2016 Jan; 6():18756. PubMed ID: 26738698
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of electron recombination of dye-sensitized solar cells based on TiO2 nanorod arrays sensitized with different dyes.
    Wang H; Liu M; Zhang M; Wang P; Miura H; Cheng Y; Bell J
    Phys Chem Chem Phys; 2011 Oct; 13(38):17359-66. PubMed ID: 21881630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Graphene/TiO₂ Composite Layer on the Performance of Dye-Sensitized Solar Cells.
    Wei L; Chen S; Yang Y; Dong Y; Song W; Fan R
    J Nanosci Nanotechnol; 2018 Feb; 18(2):976-983. PubMed ID: 29448522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced photovoltaic performance of dye-sensitized solar cells using a new photoelectrode material: upconversion YbF3-Ho/TiO2 nanoheterostructures.
    Yu J; Yang Y; Fan R; Wang P; Dong Y
    Nanoscale; 2016 Feb; 8(7):4173-80. PubMed ID: 26866582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dye adsorption mechanisms in TiO2 films, and their effects on the photodynamic and photovoltaic properties in dye-sensitized solar cells.
    Hwang KJ; Shim WG; Kim Y; Kim G; Choi C; Kang SO; Cho DW
    Phys Chem Chem Phys; 2015 Sep; 17(34):21974-81. PubMed ID: 26235488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alkyl-Group-Wrapped Unsymmetrical Squaraine Dyes for Dye-Sensitized Solar Cells: Branched Alkyl Chains Modulate the Aggregation of Dyes and Charge Recombination Processes.
    Singh AK; Mele Kavungathodi MF; Nithyanandhan J
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):2555-2565. PubMed ID: 31826606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TiO2 nanotubes infiltrated with nanoparticles for dye sensitized solar cells.
    Pan X; Chen C; Zhu K; Fan Z
    Nanotechnology; 2011 Jun; 22(23):235402. PubMed ID: 21474874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Charge transport versus recombination in dye-sensitized solar cells employing nanocrystalline TiO2 and SnO2 films.
    Green AN; Palomares E; Haque SA; Kroon JM; Durrant JR
    J Phys Chem B; 2005 Jun; 109(25):12525-33. PubMed ID: 16852549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual Functional Polymer Interlayer for Facilitating Ion Transport and Reducing Charge Recombination in Dye-Sensitized Solar Cells.
    Wang YC; Li SS; Wen CY; Chen LY; Ho KC; Chen CW
    ACS Appl Mater Interfaces; 2016 Dec; 8(49):33666-33672. PubMed ID: 27960364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tailored Synthesis of Porous TiO₂ Nanocubes and Nanoparallelepipeds with Exposed {111} Facets and Mesoscopic Void Space: A Superior Candidate for Efficient Dye-Sensitized Solar Cells.
    Amoli V; Bhat S; Maurya A; Banerjee B; Bhaumik A; Sinha AK
    ACS Appl Mater Interfaces; 2015 Dec; 7(47):26022-35. PubMed ID: 26574644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of surface modification on dye-sensitized solar cell based on an organic dye with naphtho[2,1-b:3,4-b']dithiophene as the conjugated linker.
    Wang X; Guo L; Xia PF; Zheng F; Wong MS; Zhu Z
    ACS Appl Mater Interfaces; 2014 Feb; 6(3):1926-32. PubMed ID: 24377275
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultralong TiO₂ (B) Nanowires/TiO₂ Nanoparticles Composites for Rapid Electron Transport in Dye-Sensitized Solar Cells.
    Guo M; Yang L; Chen J; Zhang J; Su H; Liu L; Xie K
    J Nanosci Nanotechnol; 2018 Dec; 18(12):8337-8344. PubMed ID: 30189957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of nitrogen doping on the performance of dye-sensitized solar cells composed of mesoporous TiO2 photoelectrodes.
    Eom KH; Yun TK; Hong JY; Bae JY; Huh S; Won YS
    J Nanosci Nanotechnol; 2014 Dec; 14(12):9362-7. PubMed ID: 25971066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NiO-decorated mesoporous TiO2 flowers for an improved photovoltaic dye sensitized solar cell.
    Zhi J; Chen A; Cui H; Xie Y; Huang F
    Phys Chem Chem Phys; 2015 Feb; 17(7):5103-8. PubMed ID: 25600889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of Ag/TiO
    Mahmoudabadi ZD; Eslami E; Narimisa M
    J Colloid Interface Sci; 2018 Nov; 529():538-546. PubMed ID: 29957578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electron Transport in Quasi-Two-Dimensional Porous Network of Titania Nanoparticles, Incorporating Electrical and Optical Advantages in Dye-Sensitized Solar Cells.
    Javadi M; Alizadeh S; Khosravi Y; Abdi Y
    Chemphyschem; 2016 Nov; 17(21):3542-3547. PubMed ID: 27537833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photophysical Studies of Ruthenium-Based Complexes and the Performance of Nanostructured TiO
    Ali MM; Pervez W; Ghann W; Uddin J
    J Nanomed Nanotechnol; 2019; 10(6):. PubMed ID: 31993249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modification of TiO₂ electrode with organic silane interposed layer for high-performance of dye-sensitized solar cells.
    Sewvandi GA; Tao Z; Kusunose T; Tanaka Y; Nakanishi S; Feng Q
    ACS Appl Mater Interfaces; 2014 Apr; 6(8):5818-26. PubMed ID: 24684283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A strategy to increase the efficiency of the dye-sensitized TiO2 solar cells operated by photoexcitation of dye-to-TiO2 charge-transfer bands.
    Tae EL; Lee SH; Lee JK; Yoo SS; Kang EJ; Yoon KB
    J Phys Chem B; 2005 Dec; 109(47):22513-22. PubMed ID: 16853932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.