These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 28795766)

  • 1. Computerized implementation of higher-order electron-correlation methods and their linear-scaling divide-and-conquer extensions.
    Nakano M; Yoshikawa T; Hirata S; Seino J; Nakai H
    J Comput Chem; 2017 Nov; 38(29):2520-2527. PubMed ID: 28795766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alternative linear-scaling methodology for the second-order Møller-Plesset perturbation calculation based on the divide-and-conquer method.
    Kobayashi M; Imamura Y; Nakai H
    J Chem Phys; 2007 Aug; 127(7):074103. PubMed ID: 17718602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy-based automatic determination of buffer region in the divide-and-conquer second-order Møller-Plesset perturbation theory.
    Fujimori T; Kobayashi M; Taketsugu T
    J Comput Chem; 2021 Apr; 42(9):620-629. PubMed ID: 33534916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Divide-and-conquer-based linear-scaling approach for traditional and renormalized coupled cluster methods with single, double, and noniterative triple excitations.
    Kobayashi M; Nakai H
    J Chem Phys; 2009 Sep; 131(11):114108. PubMed ID: 19778101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extension of linear-scaling divide-and-conquer-based correlation method to coupled cluster theory with singles and doubles excitations.
    Kobayashi M; Nakai H
    J Chem Phys; 2008 Jul; 129(4):044103. PubMed ID: 18681630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Local unitary transformation method toward practical electron correlation calculations with scalar relativistic effect in large-scale molecules.
    Seino J; Nakai H
    J Chem Phys; 2013 Jul; 139(3):034109. PubMed ID: 23883012
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Divide-and-conquer local correlation approach to the correlation energy of large molecules.
    Li W; Li S
    J Chem Phys; 2004 Oct; 121(14):6649-57. PubMed ID: 15473720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The divide-expand-consolidate family of coupled cluster methods: numerical illustrations using second order Møller-Plesset perturbation theory.
    Høyvik IM; Kristensen K; Jansik B; Jørgensen P
    J Chem Phys; 2012 Jan; 136(1):014105. PubMed ID: 22239767
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An effective energy gradient expression for divide-and-conquer second-order Møller-Plesset perturbation theory.
    Kobayashi M; Nakai H
    J Chem Phys; 2013 Jan; 138(4):044102. PubMed ID: 23387563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Explicitly correlated coupled-cluster singles and doubles method based on complete diagrammatic equations.
    Shiozaki T; Kamiya M; Hirata S; Valeev EF
    J Chem Phys; 2008 Aug; 129(7):071101. PubMed ID: 19044752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of an excited-state calculation method for large systems using dynamical polarizability: A divide-and-conquer approach at the time-dependent density functional level.
    Nakai H; Yoshikawa T
    J Chem Phys; 2017 Mar; 146(12):124123. PubMed ID: 28388124
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Second-order Møller-Plesset perturbation energy obtained from divide-and-conquer Hartree-Fock density matrix.
    Kobayashi M; Akama T; Nakai H
    J Chem Phys; 2006 Nov; 125(20):204106. PubMed ID: 17144689
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GPU-Accelerated Large-Scale Excited-State Simulation Based on Divide-and-Conquer Time-Dependent Density-Functional Tight-Binding.
    Yoshikawa T; Komoto N; Nishimura Y; Nakai H
    J Comput Chem; 2019 Dec; 40(31):2778-2786. PubMed ID: 31441083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Third- and fourth-order perturbation corrections to excitation energies from configuration interaction singles.
    Hirata S
    J Chem Phys; 2005 Mar; 122(9):094105. PubMed ID: 15836110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new near-linear scaling, efficient and accurate, open-shell domain-based local pair natural orbital coupled cluster singles and doubles theory.
    Saitow M; Becker U; Riplinger C; Valeev EF; Neese F
    J Chem Phys; 2017 Apr; 146(16):164105. PubMed ID: 28456208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combined coupled-cluster and many-body perturbation theories.
    Hirata S; Fan PD; Auer AA; Nooijen M; Piecuch P
    J Chem Phys; 2004 Dec; 121(24):12197-207. PubMed ID: 15606238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and binding energy of the H
    Lemke KH
    J Chem Phys; 2017 Jun; 146(23):234301. PubMed ID: 28641437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Higher-order equation-of-motion coupled-cluster methods.
    Hirata S
    J Chem Phys; 2004 Jul; 121(1):51-9. PubMed ID: 15260522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improvement of the coupled-cluster singles and doubles method via scaling same- and opposite-spin components of the double excitation correlation energy.
    Takatani T; Hohenstein EG; Sherrill CD
    J Chem Phys; 2008 Mar; 128(12):124111. PubMed ID: 18376912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Higher-order explicitly correlated coupled-cluster methods.
    Shiozaki T; Kamiya M; Hirata S; Valeev EF
    J Chem Phys; 2009 Feb; 130(5):054101. PubMed ID: 19206952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.