These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 28795766)

  • 21. Orbital-optimized third-order Møller-Plesset perturbation theory and its spin-component and spin-opposite scaled variants: application to symmetry breaking problems.
    Bozkaya U
    J Chem Phys; 2011 Dec; 135(22):224103. PubMed ID: 22168676
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A view on coupled cluster perturbation theory using a bivariational Lagrangian formulation.
    Kristensen K; Eriksen JJ; Matthews DA; Olsen J; Jørgensen P
    J Chem Phys; 2016 Feb; 144(6):064103. PubMed ID: 26874478
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Three pillars for achieving quantum mechanical molecular dynamics simulations of huge systems: Divide-and-conquer, density-functional tight-binding, and massively parallel computation.
    Nishizawa H; Nishimura Y; Kobayashi M; Irle S; Nakai H
    J Comput Chem; 2016 Aug; 37(21):1983-92. PubMed ID: 27317328
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Making the Coupled Cluster Correlation Energy Machine-Learnable.
    Margraf JT; Reuter K
    J Phys Chem A; 2018 Aug; 122(30):6343-6348. PubMed ID: 29985611
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cluster perturbation theory. V. Theoretical foundation for cluster linear target states.
    Pawłowski F; Olsen J; Jørgensen P
    J Chem Phys; 2019 Apr; 150(13):134112. PubMed ID: 30954052
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spin-component-scaling second-order Møller-Plesset theory and its variants for economical correlation energies: unified theoretical interpretation and use for quartet N3.
    Varandas AJ
    J Chem Phys; 2010 Aug; 133(6):064104. PubMed ID: 20707558
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Automated error control in divide-and-conquer self-consistent field calculations.
    Kobayashi M; Fujimori T; Taketsugu T
    J Comput Chem; 2018 Jun; 39(15):909-916. PubMed ID: 29399822
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cluster perturbation theory. I. Theoretical foundation for a coupled cluster target state and ground-state energies.
    Pawłowski F; Olsen J; Jørgensen P
    J Chem Phys; 2019 Apr; 150(13):134108. PubMed ID: 30954041
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tensor Hypercontraction of Cluster Perturbation Theory: Quartic Scaling Perturbation Series for the Coupled Cluster Singles and Doubles Ground-State Energies.
    Hillers-Bendtsen AE; Mikkelsen KV; Martinez TJ
    J Chem Theory Comput; 2024 Mar; 20(5):1932-1943. PubMed ID: 38380846
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Coupled-cluster methods with perturbative inclusion of explicitly correlated terms: a preliminary investigation.
    Valeev EF
    Phys Chem Chem Phys; 2008 Jan; 10(1):106-13. PubMed ID: 18075688
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Efficient linear-scaling second-order Møller-Plesset perturbation theory: The divide-expand-consolidate RI-MP2 model.
    Baudin P; Ettenhuber P; Reine S; Kristensen K; Kjærgaard T
    J Chem Phys; 2016 Feb; 144(5):054102. PubMed ID: 26851903
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cluster perturbation theory. II. Excitation energies for a coupled cluster target state.
    Pawłowski F; Olsen J; Jørgensen P
    J Chem Phys; 2019 Apr; 150(13):134109. PubMed ID: 30954037
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Linear-scaling self-consistent field calculations based on divide-and-conquer method using resolution-of-identity approximation on graphical processing units.
    Yoshikawa T; Nakai H
    J Comput Chem; 2015 Jan; 36(3):164-70. PubMed ID: 25392975
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Explicitly correlated second-order Møller-Plesset perturbation theory in a Divide-Expand-Consolidate (DEC) context.
    Wang YM; Hättig C; Reine S; Valeev E; Kjærgaard T; Kristensen K
    J Chem Phys; 2016 May; 144(20):204112. PubMed ID: 27250284
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Two-level hierarchical parallelization of second-order Møller-Plesset perturbation calculations in divide-and-conquer method.
    Katouda M; Kobayashi M; Nakai H; Nagase S
    J Comput Chem; 2011 Oct; 32(13):2756-64. PubMed ID: 21732389
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular gradient for second-order Møller-Plesset perturbation theory using the divide-expand-consolidate (DEC) scheme.
    Kristensen K; Jørgensen P; Jansík B; Kjærgaard T; Reine S
    J Chem Phys; 2012 Sep; 137(11):114102. PubMed ID: 22998244
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Locality Analysis of the Divide-Expand-Consolidate Coupled Cluster Amplitude Equations.
    Kristensen K; Ziółkowski M; Jansík B; Kjærgaard T; Jørgensen P
    J Chem Theory Comput; 2011 Jun; 7(6):1677-94. PubMed ID: 26596432
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regularized Localized Molecular Orbitals in a Divide-and-Conquer Approach for Linear Scaling Calculations.
    Peng L; Peng D; Gu FL; Yang W
    J Chem Theory Comput; 2022 May; 18(5):2975-2982. PubMed ID: 35416665
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Self-consistent Kohn-Sham method based on the adiabatic-connection fluctuation-dissipation theorem and the exact-exchange kernel.
    Bleiziffer P; Krug M; Görling A
    J Chem Phys; 2015 Jun; 142(24):244108. PubMed ID: 26133411
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analytic energy gradients for the orbital-optimized third-order Møller-Plesset perturbation theory.
    Bozkaya U
    J Chem Phys; 2013 Sep; 139(10):104116. PubMed ID: 24050337
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.