These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 28795788)

  • 1. New molecular insights into an archaeal RNase J reveal a conserved processive exoribonucleolysis mechanism of the RNase J family.
    Zheng X; Feng N; Li D; Dong X; Li J
    Mol Microbiol; 2017 Nov; 106(3):351-366. PubMed ID: 28795788
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A newly identified duplex RNA unwinding activity of archaeal RNase J depends on processive exoribonucleolysis coupled steric occlusion by its structural archaeal loops.
    Li J; Hou Y; Gu X; Yue L; Guo L; Li D; Dong X
    RNA Biol; 2020 Oct; 17(10):1480-1491. PubMed ID: 32552320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural insights into catalysis and dimerization enhanced exonuclease activity of RNase J.
    Zhao Y; Lu M; Zhang H; Hu J; Zhou C; Xu Q; Ul Hussain Shah AM; Xu H; Wang L; Hua Y
    Nucleic Acids Res; 2015 Jun; 43(11):5550-9. PubMed ID: 25940620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Euryarchaeal beta-CASP proteins with homology to bacterial RNase J Have 5'- to 3'-exoribonuclease activity.
    Clouet-d'Orval B; Rinaldi D; Quentin Y; Carpousis AJ
    J Biol Chem; 2010 Jun; 285(23):17574-83. PubMed ID: 20375016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural insights into the dual activity of RNase J.
    Li de la Sierra-Gallay I; Zig L; Jamalli A; Putzer H
    Nat Struct Mol Biol; 2008 Feb; 15(2):206-12. PubMed ID: 18204464
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tracking the elusive 5' exonuclease activity of Chlamydomonas reinhardtii RNase J.
    Liponska A; Jamalli A; Kuras R; Suay L; Garbe E; Wollman FA; Laalami S; Putzer H
    Plant Mol Biol; 2018 Apr; 96(6):641-653. PubMed ID: 29600502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct activities of several RNase J proteins in methanogenic archaea.
    Levy S; Portnoy V; Admon J; Schuster G
    RNA Biol; 2011; 8(6):1073-83. PubMed ID: 21955587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Arabidopsis chloroplast RNase J displays both exo- and robust endonucleolytic activities.
    Halpert M; Liveanu V; Glaser F; Schuster G
    Plant Mol Biol; 2019 Jan; 99(1-2):17-29. PubMed ID: 30511330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Universal RNA-degrading enzymes in Archaea: Prevalence, activities and functions of β-CASP ribonucleases.
    Clouet-d'Orval B; Phung DK; Langendijk-Genevaux PS; Quentin Y
    Biochimie; 2015 Nov; 118():278-85. PubMed ID: 26054421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RNase R mutants elucidate the catalysis of structured RNA: RNA-binding domains select the RNAs targeted for degradation.
    Matos RG; Barbas A; Arraiano CM
    Biochem J; 2009 Sep; 423(2):291-301. PubMed ID: 19630750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Archaeal β-CASP ribonucleases of the aCPSF1 family are orthologs of the eukaryal CPSF-73 factor.
    Phung DK; Rinaldi D; Langendijk-Genevaux PS; Quentin Y; Carpousis AJ; Clouet-d'Orval B
    Nucleic Acids Res; 2013 Jan; 41(2):1091-103. PubMed ID: 23222134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unravelling the dynamics of RNA degradation by ribonuclease II and its RNA-bound complex.
    Frazão C; McVey CE; Amblar M; Barbas A; Vonrhein C; Arraiano CM; Carrondo MA
    Nature; 2006 Sep; 443(7107):110-4. PubMed ID: 16957732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular basis for the recognition and cleavage of RNA by the bifunctional 5'-3' exo/endoribonuclease RNase J.
    Dorléans A; Li de la Sierra-Gallay I; Piton J; Zig L; Gilet L; Putzer H; Condon C
    Structure; 2011 Sep; 19(9):1252-61. PubMed ID: 21893286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Linkage of catalysis and 5' end recognition in ribonuclease RNase J.
    Pei XY; Bralley P; Jones GH; Luisi BF
    Nucleic Acids Res; 2015 Sep; 43(16):8066-76. PubMed ID: 26253740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RNA degradation in Bacillus subtilis: an interplay of essential endo- and exoribonucleases.
    Lehnik-Habrink M; Lewis RJ; Mäder U; Stülke J
    Mol Microbiol; 2012 Jun; 84(6):1005-17. PubMed ID: 22568516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural insights into RNA unwinding and degradation by RNase R.
    Chu LY; Hsieh TJ; Golzarroshan B; Chen YP; Agrawal S; Yuan HS
    Nucleic Acids Res; 2017 Nov; 45(20):12015-12024. PubMed ID: 29036353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bacillus subtilis mRNA decay: new parts in the toolkit.
    Bechhofer DH
    Wiley Interdiscip Rev RNA; 2011; 2(3):387-94. PubMed ID: 21957024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of RNase Sa2 complexes with mononucleotides--new aspects of catalytic reaction and substrate recognition.
    Bauerová-Hlinková V; Dvorský R; Perecko D; Povazanec F; Sevcík J
    FEBS J; 2009 Aug; 276(15):4156-68. PubMed ID: 19558492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New insights into the mechanism of RNA degradation by ribonuclease II: identification of the residue responsible for setting the RNase II end product.
    Barbas A; Matos RG; Amblar M; López-Viñas E; Gomez-Puertas P; Arraiano CM
    J Biol Chem; 2008 May; 283(19):13070-6. PubMed ID: 18337246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural basis of 3' end RNA recognition and exoribonucleolytic cleavage by an exosome RNase PH core.
    Lorentzen E; Conti E
    Mol Cell; 2005 Nov; 20(3):473-81. PubMed ID: 16285928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.