These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
302 related articles for article (PubMed ID: 28795815)
21. In vitro oligomerization and fibrillogenesis of amyloid-beta peptides. Benseny-Cases N; Klementieva O; Cladera J Subcell Biochem; 2012; 65():53-74. PubMed ID: 23224999 [TBL] [Abstract][Full Text] [Related]
22. Real-Time Monitoring of Self-Aggregation of β-Amyloid by a Fluorescent Probe Based on Ruthenium Complex. Yu HJ; Zhao W; Xie M; Li X; Sun M; He J; Wang L; Yu L Anal Chem; 2020 Feb; 92(4):2953-2960. PubMed ID: 31941275 [TBL] [Abstract][Full Text] [Related]
23. Amyloidophilic Molecule Interactions on the Surface of Insulin Fibrils: Cooperative Binding and Fluorescence Quenching. Ziaunys M; Mikalauskaite K; Smirnovas V Sci Rep; 2019 Dec; 9(1):20303. PubMed ID: 31889118 [TBL] [Abstract][Full Text] [Related]
24. N-Methyl Mesoporphyrin IX as an Effective Probe for Monitoring Alzheimer's Disease β-Amyloid Aggregation in Living Cells. Li M; Zhao A; Ren J; Qu X ACS Chem Neurosci; 2017 Jun; 8(6):1299-1304. PubMed ID: 28281745 [TBL] [Abstract][Full Text] [Related]
26. Resveratrol Induces the Conversion from Amyloid to Amorphous Aggregation of β-lactoglobulin>. Ma B; Zhang F; Liu Y; Xie J; Wang X Protein Pept Lett; 2018 Feb; 24(12):1113-1119. PubMed ID: 28925863 [TBL] [Abstract][Full Text] [Related]
27. Sensing and modulation of amyloid fibrils by photo-switchable organic dots. Uddin A; Roy B; Jose GP; Hossain SS; Hazra P Nanoscale; 2020 Aug; 12(32):16805-16818. PubMed ID: 32761038 [TBL] [Abstract][Full Text] [Related]
28. Modulation of AIE and Intramolecular Charge Transfer of a Pyrene-Based Probe for Discriminatory Detection and Imaging of Oligomers and Amyloid Fibrils. Arumugam D; Jamuna NA; Kamalakshan A; Mandal S ACS Appl Bio Mater; 2024 Oct; 7(10):6343-6356. PubMed ID: 39291866 [TBL] [Abstract][Full Text] [Related]
29. A Fluorescent Sensor for Quantitative Super-Resolution Imaging of Amyloid Fibril Assembly. Kaur A; Adair LD; Ball SR; New EJ; Sunde M Angew Chem Int Ed Engl; 2022 Mar; 61(10):e202112832. PubMed ID: 34935241 [TBL] [Abstract][Full Text] [Related]
30. Monitoring the prevention of amyloid fibril formation by alpha-crystallin. Temperature dependence and the nature of the aggregating species. Rekas A; Jankova L; Thorn DC; Cappai R; Carver JA FEBS J; 2007 Dec; 274(24):6290-304. PubMed ID: 18005258 [TBL] [Abstract][Full Text] [Related]
31. Multiparametric fluorescence detection of early stages in the amyloid protein aggregation of pyrene-labeled alpha-synuclein. Thirunavukkuarasu S; Jares-Erijman EA; Jovin TM J Mol Biol; 2008 May; 378(5):1064-73. PubMed ID: 18433772 [TBL] [Abstract][Full Text] [Related]
32. A comparison of amyloid fibrillogenesis using the novel fluorescent compound K114. Crystal AS; Giasson BI; Crowe A; Kung MP; Zhuang ZP; Trojanowski JQ; Lee VM J Neurochem; 2003 Sep; 86(6):1359-68. PubMed ID: 12950445 [TBL] [Abstract][Full Text] [Related]
33. Bis(indolyl)phenylmethane derivatives are effective small molecules for inhibition of amyloid fibril formation by hen lysozyme. Ramshini H; Mannini B; Khodayari K; Ebrahim-Habibi A; Moghaddasi AS; Tayebee R; Chiti F Eur J Med Chem; 2016 Nov; 124():361-371. PubMed ID: 27597412 [TBL] [Abstract][Full Text] [Related]
34. Fibril specific, conformation dependent antibodies recognize a generic epitope common to amyloid fibrils and fibrillar oligomers that is absent in prefibrillar oligomers. Kayed R; Head E; Sarsoza F; Saing T; Cotman CW; Necula M; Margol L; Wu J; Breydo L; Thompson JL; Rasool S; Gurlo T; Butler P; Glabe CG Mol Neurodegener; 2007 Sep; 2():18. PubMed ID: 17897471 [TBL] [Abstract][Full Text] [Related]
35. Fluorescent N-arylaminonaphthalene sulfonate probes for amyloid aggregation of alpha-synuclein. Celej MS; Jares-Erijman EA; Jovin TM Biophys J; 2008 Jun; 94(12):4867-79. PubMed ID: 18339734 [TBL] [Abstract][Full Text] [Related]
36. Mechanism of thioflavin T binding to amyloid fibrils. Khurana R; Coleman C; Ionescu-Zanetti C; Carter SA; Krishna V; Grover RK; Roy R; Singh S J Struct Biol; 2005 Sep; 151(3):229-38. PubMed ID: 16125973 [TBL] [Abstract][Full Text] [Related]
37. Structural transformations of oligomeric intermediates in the fibrillation of the immunoglobulin light chain LEN. Souillac PO; Uversky VN; Fink AL Biochemistry; 2003 Jul; 42(26):8094-104. PubMed ID: 12834361 [TBL] [Abstract][Full Text] [Related]
38. Fluorescent Probe DCVJ Shows High Sensitivity for Characterization of Amyloid β-Peptide Early in the Lag Phase. Nagarajan S; Lapidus LJ Chembiochem; 2017 Nov; 18(22):2205-2211. PubMed ID: 28892583 [TBL] [Abstract][Full Text] [Related]
39. Mechanism of formation of amyloid protofibrils of barstar from soluble oligomers: evidence for multiple steps and lateral association coupled to conformational conversion. Kumar S; Mohanty SK; Udgaonkar JB J Mol Biol; 2007 Apr; 367(4):1186-204. PubMed ID: 17292913 [TBL] [Abstract][Full Text] [Related]
40. Detection of amyloid-β fibrils using the DNA-intercalating dye YOYO-1: Binding mode and fibril formation kinetics. Lindberg DJ; Esbjörner EK Biochem Biophys Res Commun; 2016 Jan; 469(2):313-8. PubMed ID: 26612254 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]