BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

440 related articles for article (PubMed ID: 28796191)

  • 41. Hydrogel Beads of Natural Polymers as a Potential Vehicle for Colon-Targeted Drug Delivery.
    Pushpamalar J; Sathasivam T; Gugler MC
    Methods Mol Biol; 2021; 2211():171-182. PubMed ID: 33336277
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Gelatin-based electrospun and lyophilized scaffolds with nano scale feature for bone tissue engineering application: review.
    Singh YP; Dasgupta S
    J Biomater Sci Polym Ed; 2022 Sep; 33(13):1704-1758. PubMed ID: 35443894
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Biodegradable polymers for targeted delivery of anti-cancer drugs.
    Doppalapudi S; Jain A; Domb AJ; Khan W
    Expert Opin Drug Deliv; 2016 Jun; 13(6):891-909. PubMed ID: 26983898
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Modification of polysaccharides: Pharmaceutical and tissue engineering applications with commercial utility (patents).
    Malviya R; Sharma PK; Dubey SK
    Mater Sci Eng C Mater Biol Appl; 2016 Nov; 68():929-938. PubMed ID: 27524095
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Functional supramolecular polymers for biomedical applications.
    Dong R; Zhou Y; Huang X; Zhu X; Lu Y; Shen J
    Adv Mater; 2015 Jan; 27(3):498-526. PubMed ID: 25393728
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A Review of Biodegradable Natural Polymer-Based Nanoparticles for Drug Delivery Applications.
    Idrees H; Zaidi SZJ; Sabir A; Khan RU; Zhang X; Hassan SU
    Nanomaterials (Basel); 2020 Oct; 10(10):. PubMed ID: 33027891
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Natural Polymer-Based Micronanostructured Scaffolds for Bone Tissue Engineering.
    Katebifar S; Jaiswal D; Arul MR; Novak S; Nip J; Kalajzic I; Rudraiah S; Kumbar SG
    Methods Mol Biol; 2022; 2394():669-691. PubMed ID: 35094352
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Interpenetrating Polymer Networks polysaccharide hydrogels for drug delivery and tissue engineering.
    Matricardi P; Di Meo C; Coviello T; Hennink WE; Alhaique F
    Adv Drug Deliv Rev; 2013 Aug; 65(9):1172-87. PubMed ID: 23603210
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Recent Advances in Biodegradable Polymers and Their Biological Applications: A Brief Review.
    Alaswad SO; Mahmoud AS; Arunachalam P
    Polymers (Basel); 2022 Nov; 14(22):. PubMed ID: 36433050
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Hydrophilization of synthetic biodegradable polymer scaffolds for improved cell/tissue compatibility.
    Oh SH; Lee JH
    Biomed Mater; 2013 Feb; 8(1):014101. PubMed ID: 23472257
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Development of hybrid scaffolds with biodegradable polymer composites and bioactive hydrogels for bone tissue engineering.
    Chen YT; Chuang YH; Chen CM; Wang JY; Wang J
    Biomater Adv; 2023 Oct; 153():213562. PubMed ID: 37549480
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nanoengineered Templated Polymer Particles: Navigating the Biological Realm.
    Cui J; Richardson JJ; Björnmalm M; Faria M; Caruso F
    Acc Chem Res; 2016 Jun; 49(6):1139-48. PubMed ID: 27203418
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Biodegradable Electrospun Scaffolds as an Emerging Tool for Skin Wound Regeneration: A Comprehensive Review.
    Sharma D; Srivastava S; Kumar S; Sharma PK; Hassani R; Dailah HG; Khalid A; Mohan S
    Pharmaceuticals (Basel); 2023 Feb; 16(2):. PubMed ID: 37259465
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A Review of Natural Polysaccharides: Sources, Characteristics, Properties, Food, and Pharmaceutical Applications.
    Benalaya I; Alves G; Lopes J; Silva LR
    Int J Mol Sci; 2024 Jan; 25(2):. PubMed ID: 38279323
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Recent progress and treatment strategy of pectin polysaccharide based tissue engineering scaffolds in cancer therapy, wound healing and cartilage regeneration.
    Koshy J; Sangeetha D
    Int J Biol Macromol; 2024 Feb; 257(Pt 2):128594. PubMed ID: 38056744
    [TBL] [Abstract][Full Text] [Related]  

  • 56. DNA block copolymers: functional materials for nanoscience and biomedicine.
    Schnitzler T; Herrmann A
    Acc Chem Res; 2012 Sep; 45(9):1419-30. PubMed ID: 22726237
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Interpenetrating polymer networks as innovative drug delivery systems.
    Lohani A; Singh G; Bhattacharya SS; Verma A
    J Drug Deliv; 2014; 2014():583612. PubMed ID: 24949205
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The role of natural polymers in bone tissue engineering.
    Guo L; Liang Z; Yang L; Du W; Yu T; Tang H; Li C; Qiu H
    J Control Release; 2021 Oct; 338():571-582. PubMed ID: 34481026
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fabrication of Biomedical Scaffolds Using Biodegradable Polymers.
    Kirillova A; Yeazel TR; Asheghali D; Petersen SR; Dort S; Gall K; Becker ML
    Chem Rev; 2021 Sep; 121(18):11238-11304. PubMed ID: 33856196
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Responsive Polymers as Smart Nanomaterials Enable Diverse Applications.
    Zhao J; Lee VE; Liu R; Priestley RD
    Annu Rev Chem Biomol Eng; 2019 Jun; 10():361-382. PubMed ID: 31173525
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.