These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

443 related articles for article (PubMed ID: 28796191)

  • 61. The role of natural polymers in bone tissue engineering.
    Guo L; Liang Z; Yang L; Du W; Yu T; Tang H; Li C; Qiu H
    J Control Release; 2021 Oct; 338():571-582. PubMed ID: 34481026
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Fabrication of Biomedical Scaffolds Using Biodegradable Polymers.
    Kirillova A; Yeazel TR; Asheghali D; Petersen SR; Dort S; Gall K; Becker ML
    Chem Rev; 2021 Sep; 121(18):11238-11304. PubMed ID: 33856196
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Responsive Polymers as Smart Nanomaterials Enable Diverse Applications.
    Zhao J; Lee VE; Liu R; Priestley RD
    Annu Rev Chem Biomol Eng; 2019 Jun; 10():361-382. PubMed ID: 31173525
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Surface engineered and drug releasing pre-fabricated scaffolds for tissue engineering.
    Chung HJ; Park TG
    Adv Drug Deliv Rev; 2007 May; 59(4-5):249-62. PubMed ID: 17482310
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Biological evaluation of preceramic organosilicon polymers for various healthcare and biomedical engineering applications: A review.
    Francis A
    J Biomed Mater Res B Appl Biomater; 2021 May; 109(5):744-764. PubMed ID: 33075186
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Designing Natural Polymer-Based Capsules and Spheres for Biomedical Applications-A Review.
    Sharma K; Porat Z; Gedanken A
    Polymers (Basel); 2021 Dec; 13(24):. PubMed ID: 34960858
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Glycoproteins functionalized natural and synthetic polymers for prospective biomedical applications: A review.
    Tabasum S; Noreen A; Kanwal A; Zuber M; Anjum MN; Zia KM
    Int J Biol Macromol; 2017 May; 98():748-776. PubMed ID: 28111295
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Biodegradable nanomats produced by electrospinning: expanding multifunctionality and potential for tissue engineering.
    Ashammakhi N; Ndreu A; Piras AM; Nikkola L; Sindelar T; Ylikauppila H; Harlin A; Gomes ME; Neves NM; Chiellini E; Chiellini F; Hasirci V; Redl H; Reis RL
    J Nanosci Nanotechnol; 2007 Mar; 7(3):862-82. PubMed ID: 17450849
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Functionalized synthetic biodegradable polymer scaffolds for tissue engineering.
    Liu X; Holzwarth JM; Ma PX
    Macromol Biosci; 2012 Jul; 12(7):911-9. PubMed ID: 22396193
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Application of plant products in the synthesis and functionalisation of biopolymers.
    Singh NK; Baranwal J; Pati S; Barse B; Khan RH; Kumar A
    Int J Biol Macromol; 2023 May; 237():124174. PubMed ID: 36990405
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Porous Scaffolds for Regeneration of Cartilage, Bone and Osteochondral Tissue.
    Chen G; Kawazoe N
    Adv Exp Med Biol; 2018; 1058():171-191. PubMed ID: 29691822
    [TBL] [Abstract][Full Text] [Related]  

  • 72. 3D Scaffolds Based on Conductive Polymers for Biomedical Applications.
    Alegret N; Dominguez-Alfaro A; Mecerreyes D
    Biomacromolecules; 2019 Jan; 20(1):73-89. PubMed ID: 30543402
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A Comparative Review of Natural and Synthetic Biopolymer Composite Scaffolds.
    Reddy MSB; Ponnamma D; Choudhary R; Sadasivuni KK
    Polymers (Basel); 2021 Mar; 13(7):. PubMed ID: 33808492
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Drug delivery's quest for polymers: Where are the frontiers?
    Merkle HP
    Eur J Pharm Biopharm; 2015 Nov; 97(Pt B):293-303. PubMed ID: 26614554
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Designing Smart Biomaterials for Tissue Engineering.
    Khan F; Tanaka M
    Int J Mol Sci; 2017 Dec; 19(1):. PubMed ID: 29267207
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Conductive polymers: towards a smart biomaterial for tissue engineering.
    Balint R; Cassidy NJ; Cartmell SH
    Acta Biomater; 2014 Jun; 10(6):2341-53. PubMed ID: 24556448
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Prospects of microbial polysaccharides-based hybrid constructs for biomimicking applications.
    Qamar SA; Riasat A; Jahangeer M; Fatima R; Bilal M; Iqbal HMN; Mu BZ
    J Basic Microbiol; 2022 Nov; 62(11):1319-1336. PubMed ID: 35048396
    [TBL] [Abstract][Full Text] [Related]  

  • 78. More good news about polymeric plant- and algae-derived biomaterials in drug delivery systems.
    Scholtz J; Van der Colff J; Steenekamp J; Stieger N; Hamman J
    Curr Drug Targets; 2014 May; 15(5):486-501. PubMed ID: 24597532
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Value addition of rice straw cellulose fibers as a reinforcer in packaging applications.
    Bangar SP; Whiteside WS; Kajla P; Tavassoli M
    Int J Biol Macromol; 2023 Jul; 243():125320. PubMed ID: 37307977
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Scaffolds Fabricated from Natural Polymers/Composites by Electrospinning for Bone Tissue Regeneration.
    Sofi HS; Ashraf R; Beigh MA; Sheikh FA
    Adv Exp Med Biol; 2018; 1078():49-78. PubMed ID: 30357618
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.