These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 28796341)
1. Silver (nano)materials cause genotoxicity in Enchytraeus crypticus, as determined by the comet assay. Maria VL; Ribeiro MJ; Guilherme S; Soares AMVM; Scott-Fordsmand JJ; Amorim MJB Environ Toxicol Chem; 2018 Jan; 37(1):184-191. PubMed ID: 28796341 [TBL] [Abstract][Full Text] [Related]
2. Effects of Ag nanomaterials (NM300K) and Ag salt (AgNO3) can be discriminated in a full life cycle long term test with Enchytraeus crypticus. Bicho RC; Ribeiro T; Rodrigues NP; Scott-Fordsmand JJ; Amorim MJB J Hazard Mater; 2016 Nov; 318():608-614. PubMed ID: 27474850 [TBL] [Abstract][Full Text] [Related]
3. The toxicity of silver nanomaterials (NM 300K) is reduced when combined with N-Acetylcysteine: Hazard assessment on Enchytraeus crypticus. Mendonça MCP; Rodrigues NP; Scott-Fordsmand JJ; Jesus MB; Amorim MJB Environ Pollut; 2020 Jan; 256():113484. PubMed ID: 31677872 [TBL] [Abstract][Full Text] [Related]
4. Oxidative Stress Mechanisms Caused by Ag Nanoparticles (NM300K) are Different from Those of AgNO3: Effects in the Soil Invertebrate Enchytraeus Crypticus. Ribeiro MJ; Maria VL; Scott-Fordsmand JJ; Amorim MJ Int J Environ Res Public Health; 2015 Aug; 12(8):9589-602. PubMed ID: 26287225 [TBL] [Abstract][Full Text] [Related]
5. Effects of Silver Nanoparticles and Ions Exposure on the Soil Invertebrates Folsomia candida and Enchytraeus crypticus. Hlavkova D; Beklova M; Kopel P; Havelkova B Bull Environ Contam Toxicol; 2020 Aug; 105(2):244-249. PubMed ID: 32556691 [TBL] [Abstract][Full Text] [Related]
6. Nanomaterials induce DNA-protein crosslink and DNA oxidation: A mechanistic study with RTG-2 fish cell line and Comet assay modifications. Klingelfus T; Disner GR; Voigt CL; Alle LF; Cestari MM; Leme DM Chemosphere; 2019 Jan; 215():703-709. PubMed ID: 30347365 [TBL] [Abstract][Full Text] [Related]
7. Novel understanding of toxicity in a life cycle perspective - The mechanisms that lead to population effect - The case of Ag (nano)materials. Rodrigues NP; Scott-Fordsmand JJ; Amorim MJB Environ Pollut; 2020 Jul; 262():114277. PubMed ID: 32163806 [TBL] [Abstract][Full Text] [Related]
9. Hazard assessment of nickel nanoparticles in soil-The use of a full life cycle test with Enchytraeus crypticus. Santos FCF; Gomes SIL; Scott-Fordsmand JJ; Amorim MJB Environ Toxicol Chem; 2017 Nov; 36(11):2934-2941. PubMed ID: 28488336 [TBL] [Abstract][Full Text] [Related]
10. Improved single-cell gel electrophoresis assay for detecting DNA damage in Eisenia foetida. Di Marzio WD; Saenz ME; Lemière S; Vasseur P Environ Mol Mutagen; 2005 Dec; 46(4):246-52. PubMed ID: 15957191 [TBL] [Abstract][Full Text] [Related]
11. Toxicokinetics and toxicodynamics of Ag nanomaterials (NM300K) in the soil environment-impact on Enchytraeus crypticus (Oligochaeta). Santos FCF; Verweij RA; van Gestel CAM; Amorim MJB Ecotoxicol Environ Saf; 2023 Mar; 252():114599. PubMed ID: 36738615 [TBL] [Abstract][Full Text] [Related]
12. Protective effect of N-acetylcysteine on the toxicity of silver nanoparticles: Bioavailability and toxicokinetics in Enchytraeus crypticus. Mendonça MCP; de Jesus MB; van Gestel CAM Sci Total Environ; 2020 May; 715():136797. PubMed ID: 32014764 [TBL] [Abstract][Full Text] [Related]
13. The comet assay as an indicator test for germ cell genotoxicity. Speit G; Vasquez M; Hartmann A Mutat Res; 2009; 681(1):3-12. PubMed ID: 18462987 [TBL] [Abstract][Full Text] [Related]
14. Oxidative stress and genotoxicity of an organic and an inorganic nanomaterial to Eisenia andrei: SDS/DDAB nano-vesicles and titanium silicon oxide. Correia B; Lourenço J; Marques S; Nogueira V; Gavina A; da Graça Rasteiro M; Antunes F; Mendo S; Pereira R Ecotoxicol Environ Saf; 2017 Jun; 140():198-205. PubMed ID: 28260685 [TBL] [Abstract][Full Text] [Related]
15. Multigenerational exposure of Ag materials (nano and salt) in soil - environmental hazards in Santos FCF; Verweij RA; Soares AMVM; Scott-Fordsmand JJ; van Gestel CAM; Amorim MJB Nanoscale Adv; 2024 Jan; 6(3):826-831. PubMed ID: 38298581 [TBL] [Abstract][Full Text] [Related]
16. Characterization of synthesized silver nanoparticles and assessment of its genotoxicity potentials using the alkaline comet assay. Flower NA; Brabu B; Revathy M; Gopalakrishnan C; Raja SV; Murugan SS; Kumaravel TS Mutat Res; 2012 Feb; 742(1-2):61-5. PubMed ID: 22178963 [TBL] [Abstract][Full Text] [Related]
17. Toxic effects and bioaccumulation of nano-, micron- and ionic-Ag in the polychaete, Nereis diversicolor. Cong Y; Banta GT; Selck H; Berhanu D; Valsami-Jones E; Forbes VE Aquat Toxicol; 2011 Oct; 105(3-4):403-11. PubMed ID: 21831346 [TBL] [Abstract][Full Text] [Related]
18. Genotoxicity of environmental agents assessed by the alkaline comet assay. Møller P Basic Clin Pharmacol Toxicol; 2005; 96 Suppl 1():1-42. PubMed ID: 15859009 [TBL] [Abstract][Full Text] [Related]
19. In vivo Comet assay on isolated kidney cells to distinguish genotoxic carcinogens from epigenetic carcinogens or cytotoxic compounds. Nesslany F; Zennouche N; Simar-Meintières S; Talahari I; Nkili-Mboui EN; Marzin D Mutat Res; 2007 Jun; 630(1-2):28-41. PubMed ID: 17507283 [TBL] [Abstract][Full Text] [Related]
20. Ecotoxicity of wastes in avoidance tests with Enchytraeus albidus, Enchytraeus crypticus and Eisenia fetida (Oligochaeta). Kobeticová K; Hofman J; Holoubek I Waste Manag; 2010 Apr; 30(4):558-64. PubMed ID: 20042324 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]