BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 2879641)

  • 1. Polarized microtubule gliding and particle saltations produced by soluble factors from sea urchin eggs and embryos.
    Pryer NK; Wadsworth P; Salmon ED
    Cell Motil Cytoskeleton; 1986; 6(6):537-48. PubMed ID: 2879641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microtubule-associated motility in cytoplasmic extracts of sea urchin eggs.
    Gliksman NR; Salmon ED
    Cell Motil Cytoskeleton; 1993; 24(3):167-78. PubMed ID: 8467524
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of the gliding, fishtailing and circling motions of native microtubules.
    Weiss DG; Langford GM; Seitz-Tutter D; Maile W
    Acta Histochem Suppl; 1991; 41():81-105. PubMed ID: 1725829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intracellular pH shift leads to microtubule assembly and microtubule-mediated motility during sea urchin fertilization: correlations between elevated intracellular pH and microtubule activity and depressed intracellular pH and microtubule disassembly.
    Schatten G; Bestor T; Balczon R; Henson J; Schatten H
    Eur J Cell Biol; 1985 Jan; 36(1):116-27. PubMed ID: 4038941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the microtubule movement produced by sea urchin egg kinesin.
    Porter ME; Scholey JM; Stemple DL; Vigers GP; Vale RD; Sheetz MP; McIntosh JR
    J Biol Chem; 1987 Feb; 262(6):2794-802. PubMed ID: 3102475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic instability and motile events of native microtubules from squid axoplasm.
    Weiss DG; Langford GM; Seitz-Tutter D; Keller F
    Cell Motil Cytoskeleton; 1988; 10(1-2):285-95. PubMed ID: 3180248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microtubule formation from maternal tubulins during sea urchin embryogenesis: measurement of soluble and insoluble tubulin pools.
    Gong ZY; Brandhorst BP
    Mol Reprod Dev; 1988; 1(1):3-9. PubMed ID: 3272152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microinjected carboxylated beads move predominantly poleward in sea urchin eggs.
    Wadsworth P
    Cell Motil Cytoskeleton; 1987; 8(4):293-301. PubMed ID: 2891449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A microtubule-activated ATPase from sea urchin eggs, distinct from cytoplasmic dynein and kinesin.
    Collins CA; Vallee RB
    Proc Natl Acad Sci U S A; 1986 Jul; 83(13):4799-803. PubMed ID: 2873571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation of microtubules and a dynein-like MgATPase from unfertilized sea urchin eggs.
    Scholey JM; Neighbors B; McIntosh JR; Salmon ED
    J Biol Chem; 1984 May; 259(10):6516-25. PubMed ID: 6144678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo and in vitro studies on the role of HMW-MAPs in taxol-induced microtubule bundling.
    Albertini DF; Herman B; Sherline P
    Eur J Cell Biol; 1984 Jan; 33(1):134-43. PubMed ID: 6141942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Displacement of cleavage plane in the sea urchin egg by locally applied taxol.
    Hamaguchi Y
    Cell Motil Cytoskeleton; 1998; 40(3):211-9. PubMed ID: 9678665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low potency of taxol at microtubule minus ends: implications for its antimitotic and therapeutic mechanism.
    Derry WB; Wilson L; Jordan MA
    Cancer Res; 1998 Mar; 58(6):1177-84. PubMed ID: 9515803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. End-stabilized microtubules observed in vitro: stability, subunit, interchange, and breakage.
    Dye RB; Flicker PF; Lien DY; Williams RC
    Cell Motil Cytoskeleton; 1992; 21(3):171-86. PubMed ID: 1581972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microtubule-associated organelle and vesicle transport in fibroblasts.
    Hayden JH
    Cell Motil Cytoskeleton; 1988; 10(1-2):255-62. PubMed ID: 3180246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of dynamic instability of steady-state microtubules in vitro by video-enhanced differential interference contrast microscopy with an appendix by Emin Oroudjev.
    Yenjerla M; Lopus M; Wilson L
    Methods Cell Biol; 2010; 95():189-206. PubMed ID: 20466136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Taxol inhibits the nuclear movements during fertilization and induces asters in unfertilized sea urchin eggs.
    Schatten G; Schatten H; Bestor TH; Balczon R
    J Cell Biol; 1982 Aug; 94(2):455-65. PubMed ID: 6125518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visualization of the GDP-dependent switching in the growth polarity of microtubules.
    Tanaka-Takiguchi Y; Itoh TJ; Hotani H
    J Mol Biol; 1998 Jul; 280(3):365-73. PubMed ID: 9665843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of multiple monoclonal antibodies to characterize the major microtubule-associated protein in sea urchin eggs.
    Bloom GS; Luca FC; Collins CA; Vallee RB
    Cell Motil; 1985; 5(6):431-46. PubMed ID: 2866844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polyribosome targeting to microtubules: enrichment of specific mRNAs in a reconstituted microtubule preparation from sea urchin embryos.
    Hamill D; Davis J; Drawbridge J; Suprenant KA
    J Cell Biol; 1994 Nov; 127(4):973-84. PubMed ID: 7962079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.